
44,

DdCUMENT RESUME

V.

r

137 UM 334

AUTIDR
TITLE

INSTITUTEON

.1 SE, 030 448

Allen, Frank .B.: And Others
Mathematics for High Schokol, Introduction to qa'trix
Algebra. Preelilminary Edition.
Stanford Unib., of Calif. School Mathematics Study .

Group. .
.

SPONS AGENCY National. Science Foundation, Washington, D.C.,
PUB DATE' '_60
NOTE 262p.

_ s
... . ... .4EDRS PRICE. MpO1/P7.11 Plus .P.ostaqew .

pESCRIPTjti's *Algebra; Experimental Programs; Mathematics ., Curriculum-4' *Mathemat ics Ins,truction: "'I:Matrices; .
.. Modern Mathem tics; Secondar Education': *Sevondary o. ?...

Schook Mathem .cr: Studspiti R.4set,r611: *,Textbook's o..i
IDENTIFIERS *Sclirool Mathem '4cs Stay Group -

.
,.

. r Ji:..iii..,
1,c

.AB,,STRACT 4 ...

Thls vOlpste is an experimental ation for.t higlY4.!
school course in the theory .of matrices and vec ors. One.of the basi".
Alms is tY demonstrate the sttucture of mat.hema ic.s. Aziother,
criterion is to provide s/ome vtools that: will .be useful in the ! ,

student's transition from school to college. A last objectite is tha.t
4 the intellectually vigorous s-tudents may obtain an idea .of what

constitutes ftmathematicail research:ft The five chapters thound in.it.he
text are: (1) .Mat,fix Ipeta4lons; (2)/ The Algebra of 2k2 Mlitrices; (3).-
Ma ces and Systems of Linear EguationS; (14) r hp Representaton of
Co Matrices as Geome+riq Vecto.is: and (51 TranSformatiops of the*

, Plane...Research Exercises, are also Incl'uded.,. Authorre--MK) -I ,.I
:.

,.

'7

4.

S.

1

fir
4

4

Itt

fit

ft-

, * Reproductions supplied by EDPS are the best that can be mai?. *
* . . . from the origi.nal document. *.

4



co SCHOOL,
MATHEMATICS
STUDY. GROU P

CZ)

0.0

4.

%

'

(4

I.

.11) 440

MATHEMATICS FOR
WI-I SCHOOL
INTRObUCTION TO MATRIX ALGEBRA

(preliminary edition)

41.

S OE PANT ME NT OF HE AL TN
EDVTATION 8. WELFARE
NATIONAL INSTITUTE oe

EDUCAZION

JAfF Ci I liA-. fit f N NE PNO
f f. f A'. f f I f f (1 f NOM

roof OF 11 .1 tia PtIt.AN[jAIIIINON1(IN
,1 po,Nr. vit vs 04 0PiNt0N1.

.tAT} F. FO, NWF N1( f r C/E Ptlf
'Al A,IONAC IN',IIII1Ft OF

I C.", r.toN "IN f,t ;.1)1 t( 1

1.

:
Pc mot- If, fit

MA IF PIA! 111,A` 13f Pi I MAN `f ICY

M aril\ jVharks

. .!,; .if
,11. 4I.C. h. ;

t

71



i

4

4.

0

/

S.

A

MATHEMATICS FOR HIGH SCHOOL
INTRODUCTION TO MATRIX ALGEBRA

.(pieliniinary edition)
r

P

1

. Prepared under the supervision of the.Paiibl on Sample Textbctoks of the School
Mathematics Study Group:

Frank' B. Allen, lyons Townitip High School

Edwin C. DouglaS, Taft School
. .

Donald E. Richmond, Williams College

Charles E. Rickart, Yale University
A

Henry Swain, New Trier Township High School

Robert J. Walker, Corndl University'

u

p.

L.

f

I.



4.

er'
\

V

a.

\

ode

4

a.

Jr
. 0

,(14°
Financial support .for the Schoel MatheMatics Study Group has been provided by the-

Mitionalicience FoUndation. ,.
(t . ..

L.
Copyright 1960 by Yale University.

4

`.

PHOTOLITH(IPRINTED BY CUSHINC, - MALLO_X. INC.
ANN ARBOR. MICIIVIAN. UNITE') STATEs Amrrtr.A

,



a41.

FOREWORD .

The increasing contribution of mathematics to the .eulture of the modern'
'world, as well as its importance as 'a vital pait of scientific and humanistic..
education,'has made it essential that the mathematics in out schools be both
well selected and well aught.

/
With this in m d the varioils mathematical organizations in the United

States Cooperated n the formation of the School Mathematics Study Group;
This Study G;roup includes college and. unive'rsity mathematicians, high school
teachers of ma ematics, experts in education and representatives of sciele
and technolo . The general objective of the Study Group is the kiprovemept
of the teac ng of mathematics in the schools of this country. The, National
Science Foundation has provided substantial funds for the support of this,
endeavor'.

/One of the prerequisities for the improvement of the teaching ofe.mathe
Matics in our schools is an imptoved'curriculum7one which takes a4;ount of'the
increasing use of thathematics-in-science and technology'and in other areas of
.knowledge and at the same time one whiCh reflect& recent advances in mathematics
itself. One of the first projects undertaken by the School Mathematics Study
GrouplJai to enlist a group of outstanding mfthematicians andimaihematics
teachers to prePare a series of high school textbooks 'which woad illustrate
such an improved curriculum. This t4xtbook is the first p'roduct bf this p'ro--

ject. .

' The professional mathematicians in the Study Group believe that much of
the mathematics'preSented'in this seriqp of texts,is important for all welt-
educated citizens in our society to know and that all of it is important for the
prt:colilege student to learn in preparation for advanced work in the field. At

the same time, the high'school teachers in the Study.Group believe thaf it ih
presented,in such a form that it can be readily zrasped by college capable .

students."

In most instances the material presented in this series will have a
-

.familiar note to ft, hut,the flavor of presentation, the point of view, as it

were, will.be different. Some material will be entirelir new to the traditional
curriculum. pas is as it should be, for mathema0.cs is a living' and an ever
growing 'subject, and not a'dead and frozen product, of antiquity. This heaj.thy

fusion of the old and the new should lead a collegebound student to a,better
.understanding of the basic concepts and structure of mathematics and provide a-
firmer foundation for later courses. 0

It is not intended that these, books be regarded as the only,definitive way
of presenting good mathematics to cpllege gapable students.' Instead,.they should
be thought of as a sample of the kind aPpaproved curriculum that we need ahd as
asource of suggestions for the authors ch.4 the commercial textbooks the

future. It is sincerely hoped that these texts will lead the way oward in
spiring a more meaningful teaching of Mathematics, the Due4p'and Servant of the
Sciences. .



PREFACE

The present volume is anexperimental edition'for a high-school 'Course in'
the theory of matrices and vectors. iIn selecting material for the text, the
School Mathematics Study Group has been'lMindful of the fact that this is the
last mathematics course in secondary school, the terminal course for many
studdnts. As citizen's, they should have a. saund idea.of tli96nature of mathe-
matics. Thls pipint ofi view has been emphasized in the'Harvard report, "General
Education in a Free Society," Harvar UniversitY.Press, Cambridge, 1945, which
states: -"Maitiematics'may be define as title science of abstract form. The die-
'cernment ofAtructure is esseltial, no less to the appreciation of a painting or
symphony than)in the behaviour of a physical system;1 no less in economics than
in astronomy. Mathematics-studies order, abstracted from the particular objeets
and phenomena which exhibit it,.and in a generalized. torm."

1

One of our basic aims is thus to demonstrate the structure of mathematics.
We shall not'be cOncerned, however, with structure mereW as sych. Rather, we ,

shall exhibit somq rich mathematics that is totally dew to the student and
demonstrate struckure as we proceed. To make abstract form a topic unto itself
)0ften leads to a barren presentation; to discuss the.strusure of the already-
familiar aritipetic and algebra seems forced and repetitive to the boy or girl

Nekgho is dreaming of a place in a jet age,,even space age.
/

It is important to give the student some "new" athemati6s that 'has cort-

siderable vigor and vitality: Until very recently, the high-school curriculum
has been almost entirely concerned with ideas that were Aveloped during or
before'the sixteentif-and sewenteenth centuries. Computers and filect,ronic brainse
are front-page neiie. In ordeal, to appeal to the imagination of the studenp and
to expose some mathematics that, is.very much alive, the material must be Ow,
differept, and bold.

Another cltetion is to provide some tools that will be eminently uSeful
the studentEs transition Irom school to college, tools thatiwill help bridge

the gap from the manipulative spirit of high-school mathematics`to the abstract ,

viewpoint of modern algebraic studies. Yet this material must not come fram
the usual sequintial courses.

4
A unit on matrix algebra will satisfy the forgoing criteria. As one

loperation after another is defined, the strtmture of mathematics can be repeat-
edly emphasized. Terms like group, ring, field, andkisomorphism will be intro-
duced when meaningfdl and needed for uni*ng concepts. Thus they will be met
in a new, appropriate, and substantial Lontext; they will not be applied to
shopworn material. 'Introtluced by Cayley in 1858, recognized by Heisenberg in
1925 as exactly the tobl he needed to develop his revolutiOdary work in quantum
mechanics, employed today in such diversd ways as providing a language for
atogric physics, measuring the air flow over the wingiof an airplane, and keeping
the partsr inventory at a minimum in a factory, matrices can put the studdnt -

close to'.the frontiers of mathematics and provide striking'examp1es of pat erns
that arise in the most varied tircumstances. Moreover, the-student meets s e

mathematibs emancipated from the familiar rules of arithmetic, and he lear
that it is within his capacities to "invent" some of his own. If this study
can make mathematics mqe alive, then here indeed is a promising path.

4 4 14r.
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.
Our study of matrix algebra will involve-the investig tion of a significant

jpdsulational system, which will reflect the vigor of abstra t matheqatics. This

is a unit'in "harermathematics that has power ond beauty.. t will provide an

effective language and some dynmnic concepts that will'enharice the student's

abilitf to handle his first college courses yet .not duplicate material.
%

Lastly, with the objective that the intellectually vigorous students may,

in some small part,,obtain an idea bf what constitutelp "Aathematical research,".

there is appended a set of "Research-Exercises," These-We by no moans over
night homeworlr and any one of them may well constitute a project to be executed

by several students. Such team operations are conducive to stimulating dis

course and critical- fhinking.

k

It
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Chapter 1

MATRIX OPERATIONS

'1-1. Introduction

,r

As we have stuaied more -and mor$sophisticated..mathematics, we have held
,

4-N

occasion to use more and more sophisticated kinds of "numbers." We began with

'the positive whole-numbeKs, 1, 2, .Then, in Order to make subtractions

like 3 - 7 pessible,

had to be introduced.

zero and the negative mhole numbers, 0, -1, -2140-3, ...,

Next, in order to make it possible to divide any number

by anVnonzero numbez, fractionsiolike 1/2, -2/3, and -157/321 were invented.'

th-tg-ai:d not bring us to the end of our.story, for, in ord4 that eyery positive

numbex should have a square roq, a cube root, a logarithm, etc.', it was

necessary'to invent still more numbers: the infinite decimals or real numbers,
apb

guch as 1.4142.:

negative numbers

equations as

3.1415928..., and 0.13131313.... Finally, in order that

should also have square roots, and that,such quadratic.

x2 + x =0

should have solutions, it was necesw to invent complex numbers like

3 ± 21, 1 + and -1/2 + (1/37)i.

Whenever there has seemed to be a good reason to do so, we have invented

7

new s iets tf "numbers." For instance, in/ nventing complex quantities, we

began not with the quantities thems lves but with a purpose: to find a

system o.,f numbers each of which has a square root. When we haveimade one

such invetion, it is n6t hard to tealize that'thete is no reason to stop

inventind Why should we not hope .to invent manylkinds of new numbes?

Of course, it is easy to inveneth.ings that db riot work; but harder to

invent thingsithat do work -- easy to invent things that are useless, but

1



S.

lard to invent things that Eere useful. 'the same is true 'ofi the invention of

,

new kinds of numbers. --The hard thing is to invent useful kindssof numbers, /
400

. . - ... .

.. and kinds of numbers "that work." Nerrtheless, a large number of more or /

& less '. successful new kinds of numbera have been invented bytMathematJ,c-

:* #

In this book, we are going to study one of the most successful of thAt nev
k

I

4

kinds of numbers: the matrices.

Before we tell ydu what mattices are, it is well for Ils,to emphasize

their importagce. -Th'ey are usefut in almost every ,branch of science and

engineeftng. A great number of the computations made on ,the giant "electronic

brains" are computations.with matrices. Mh4 problems in statistics'are.

,expressed in terms of matriges. Mhtrices come up in the mathematical problems

of economids. They are extremely importayit in the study of atomic physics;

indeed, atamip physidists express almost all their problems in terms. of

matrices, and it-would noi be an exaggeration to say Mat the algbra of.

matiices is the language of atomic physics. Many otler kinds of algebra,

like complexnumber algebra and vector algebra, whidh.same of you may already
#

have stu4ed, can be explained very a ily in terms of matrices. So, in

studying matrices, ou will be studying one of the newest and most, important,

as"well as one of tle most interesting, branches,of Mathematics.

Let,us a few simple exam les.

Mhny a baseball-fan, when he f rst opens the newspaper, refers, to a
/ -1

tabulation similar to the followink:

look at

5.

11

A

,

. r, )

Aaron ,4

Williams ,r4,

Mantle

.

Lopez
... f 1

1.s

-

G ,

6B

52
,

60

63
.

)
AB, R H

280 521109

194 29/ --. 60

228 51,---- 70

1

24y '38 72
4

4

J

e 4

A

"

t .

\...--

//' A,

S

a
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I

fIt he is a MintitX .an;. he looks at the'enta y. in the third row and fourth
e

eolumn of numbers in oradtt9,1earn how many hits_Mantli has ;thus far obtained

,
during 'the sevon.

.

'- o

YOU will aqte.that Ws.e have saia "row" in speaking 91 a horizontal prray,-

.

Land "column" in speakin$ or'et'ver4a1 array. thus, the third row ist
. .

. . \
. .

(. 0.
.

60 228 51 70e

and the fourth column is

109

- 60

70

72

4. .

An assemb:ler of TV.sets might have before him a table of the following

sori:
.

)

Model A Model B Model C,

Net

46

Number of tubes/

Number- of 'speakers

13

2

18

3 .

20

4

vi

This table indicates the number of Wipes ind the number of speakers used in

assembelng each model. A

.0ditting the row arid coltan headings, let us foctis our attention on the

arrays of numbers in tbe last two examples:

WV

68 280 52 109

52 194 29 60

60. 228 51 .70

63 241 38 72

Suth arrays of entries are called mairices. (singulr: matrix). Thus a

matrix is a rectangular array of entries appearing in tows and. columns.

r,(
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.4
, 4

.
-...../ a

.

45 ,... .. '
4. 4

A - .'.. ' V. . ' - t.

.. Actually,j40 entries.may be complex numbers, functions, and in appropriate 2

.

"` ;tot;.%." b . . ).NT .

fi r c um a t a ti C e s e v e ñ mgtrioes themfelves; .ho'wever, :wi.ttr a few, exceptions, that l'.
I . P I 1M ..

, ,

will te'cleatly iffdicated4 we-§fiall confine ou; attention to the real numbers
.

,

. -
... /

with which we arct.aIready lamiliar; , .
.-. .. ,

. Spme exomple of matrices are.the -

3 41 .

.1

4

,

2 1/4 1/8] . (
: 0
2,

You'will note here how squarc.*brackets E dre used in the mathematical t'

designation o f ma trices . k

t A great advantage of this.notation is the fact that'we can use it in

handling ,large sets of Ambers as single units, thus simplifying'the statement

of complicated relationships.-

1-2. The Order of a Matrix

The order of a matrix isegiven by stating first the number of,rows and

then the number of columns in the matrix. For example, 'the order Of the

. 4matrices In the foregoing eRamples are'respectively 2 X 3 (read "2 by 3"),

2 x 2, 4 X 1, d 1 X 3. Generally, a matrix that has m rows and n,

columns is call d an m xn (read "m by n") matrix, or a matrix of order

0m X n.

If the number of rows is the same as the number of columns, as in ale

second example above, the'n the matrix is square. Thus, given two linear

. equations in two unknowns,

2x + 3y = 7,

lx - 2y = 0,

1 3

S.

441frs

4
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3
A

f

. , .

we' olaserve fhat the coefficients of.Nk and.. 7 constibite,a square matrix:
. - . . .

.
.',

. 4

. 1,Jh'en speakix?g of. a square n x.p .patrix, i4e
. .

.

a ,
.1,-

, 'rather than rt->C n.,-' For example, the 2.X2
.

f 0
''
2,

often,'"rife

matrix

,

4'

is a square,matrix of order-2, and the 3 X-3 Matrix;

is a square matrix of order 3.*

If the 4umber of rows

..

1 2 :3
,4-5 6

7 : ' 8 9

;4
*-

as.in'Athe foutth exaMple

A'' 4 '

e'to its order as

4

in (1))4 above, the

matrix is called a row mgtrix or a fow vector. For example., in terms -of

rectangular coordinates, a point in 'a.plan!)might be designated by the row

matrAx E2 31, or a point in space by the row matrix
3 4

Similarly, a.column matnix or columm_vector is a matrix having jlest one

column. Thus, the foregoing pdints can equally well be designated by column

matrices,

Ld
or

2

3

1

Amy

^

and the number of men, women, and children in a family might be denoted by

1

1'

3
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,

I

..

,

qs, ,

Capital letters are o ften used toidenote,general matrices, andtfie
.

.

,

corresponding small letters with appropriate Acripts are then,epployed to

designate-enries. Thus, we might.have

4 =

IFED

all al2,
a a 4 and
21 22 23

. 3 a32,
33j.

B '= 1312
,bb

21 22

'1'13]
b
23

ft

. ,

-

/
.

In these examples, the_entries located at the ihtersect4pn of the 2nd.row and

3rd colvmn are den ted by a23 and b23, respectively.

Generally, the entry is located at the intersection of the t-th row
//

and j-th column of matrix A, it is denottd by a
ij

. An m X.n matrix can be
.

-
. , .

denoted compactly as [a ii 1

-A =

n'
Thus, the foregoing matrices

A
40

i "ji2 )0( 3:
Eli;13)(3 and . B = [b

.

A and. B

it

are

If the order is clear ftom the context or is arbitrary, the notation Might be

reduced to

A = E4ij]
ylek

and B = [b .

Associated with each matrix is anbther matrix callect its transpose, wtlich

is often convenient to use and has interesting theoretical properties. The

.11

transpose A
t
of a matr/x A is formed by interchanging its rdws and columns.

For example, if

A =

[1. .2

-1
,

0
then A

t
=

1

2

2

3

1
0

k.

4

Definitign 1-1. If A = [a
ij
I is an m x n matrix, then the transpose A

t

of A is the n X m matrk B I with b.. = a., for each
11 IJ '11

j (i = I, 2,...,n; j = 1, 2,...,m).
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Exereise l.2/ .

-

-11. (a) Obtain from a newspaper or other'similar s,o6rce, six examples of

information presented inmattix for0
h

(b) In each of your eXapples,state thei/Ord.sx of the matrix.
07

(c) In eeach of phe examples,,suggegi a# atternatiVe method'(noti n niatriX
-

,1.

I
,

f /
i,form) of-presenting the same .information.. w

.. r

2. A row v6ctar wite,three entriea can be used to t bulate a perso
I c age, ,,

A

- r .
.

*

1, . 4*
! .;*

P? . t
.hbight, and wegght. ;

:. f

*. .... , f #.

(a) Give A row vector thatlists your ge.,.hei ht, .and weigh
.

.

(b) suggeWwhen it/might be useful to emplpysuch a vector.

3. Let

/
A

1.

8

(a5 What is the order.of A?

2 3 4

10 -12 14

3 6

3 .7 8

(b) Name the entries in the 4th row.

(c) Name the entries in the 3rd column.

(d) Name the entry a43.

(e) Nii/ne the entry a
14'

0

(f) Name the entry
a41'

(g) Write the.transpose At.-

4: Let

B =
{...0 1 0

0 0

IQ/

1 0 0 0

. 0. 0 0

.
.

!

0 1

1

.
I

-1, '1`;

IP r

1

, I

.11,

3'

7_,

*,

V

6

7
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(a) What is the order of Bf ,

(b) Iiame'the entrips in the 3rd column:

(0'. Name thd. entry b12.

(d) For v.ihilxt values i, j is b. #.0?

(e) For what. values i, j -is b' =2 0?.

tf) Write the transpose B.

S. (a) Write a 3 X 3 matrix

(b), /Write a 3 X 4, matrix

(c)).WrrIte a 5 X 5

/ positive, and

6. How many entries are

all.of
A

Whose entrieb are whole numbers.

none 6f whose entrie's are whole numbeers.

matrix having all entries in its first,two rows

a

all'entries itsjast Oree rows negative.-

(b) In a 3 X3 matrix?

(c) In an n.X n matrix?

there in

1-3. Equalityko'f Matrices

Two matrices are equal provided

a 2 X 2 matrix?

they have the same order and each entry

in the first is equal to the corresponding entry in the

4 1 2 X 2 2 2

2. 8 4 4/2 16/2 8/2 '

.but

2 3

5 6

.1 4

2 5

3 6

_

21
2

4

8 23

second. For example,
-^

.0

[(x-71)(x+1)]

L x-

Definition 1-2. Two matrices A and B are equal, A = B, if and only .

if they are of the same Order and their corresponding entri,es 'are equal.t



5

.

nuts 'S

[a4 nOin [1?1.:dmXn

if and only if a
ij

= b .f.or each :i,j li

),

Y

Using the definition of eqdality, we can exptes. s certain
.,.

relationshi#s4more compactly. For examplei the.equatton . ,

.

. # .
.

/
, r

1 .

ii.

ylf

i

[2X
...

,j = 1, 2,4...,n).

9

rt.

4

can befempioyed instead of the two's parka. equations

and

R4

[x toy
k - y

U R

can be written in-placc.of the four quatipns

4.

,

x + y = a b = - 1,

x a - b 3.

1. Solve the following equations:

(a)

(b)

(c)

rcises 1-3

[x

3

+ 2

y [ *4

x+ yi .[-,i

14.1 -4]-4. 1
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2. Prom Oe.equalities of '6e matrices 4 = B and B,= C, would you cohclude

that A = Why?.

3.. Write the-matrix

1

if

[ a 2

1
]

a
22

a23
all al2 al3

4

A t
4 t.. i

/ a
ij

.. 2i + 3j 4.,

*A-

4
4. Write the matrixehose entries are the sums of the corresponding entries

of tp matrices

=Mr

l 0 0 2 .".,ro"''
2. -4

3 4
and

3. 4

2 1

0 I I.'.00

5. Write the matrix whose entries are the differences (first itintis\second) of

the corresponding entries in Exercise

1*. Addition of Matrices

We Nive now defined matrices and studied some of their most elementary

yroperties. But we have not really wa7de them work. To do this, %lie must give

rules.for adding and multiplying matrices, just as was done with complex

(Ibmbers. If these numbers were defined bluntly as expressions of the form

a + bi, without the operations of addition and multiplication, and without

relation to the solution of such equations as

x
2
+ x + I = 0,

t.

they would be of relatIvely little interest. What gives life .to complex

,



4.

numbers is the.fact that we are.able to define addition and multiplication

.

'for then in such a way eilat we h.seve.a. whole aliebra of bomalex, npmbees, which
.

is indeed usefulid intereiting. , 1

O
4,

. .

. .
The sancremark applies to matrices. To give the study ormatkcices its

-1 , -

0 ', ..
. \

v .
,

,. real content, we must define "sum° and "pr duct".1 matrices, in this section,
.

... .. 4
.

we define and-study sums of matrices. Rroducts will be considered)ater.
. , k

)

,

4. You wIll recail.that whep.two-crp14 numUerS'are ad ded.,l'fik example
A

. . . 'tr. 4 , -Ilk ,.
. .A.

.

3" + 5 -and 2 + 4i, the two r4I1 components ane the two imagiriary compeirilts
, .

.

, ,

are added separately. Thus, 4) Y,

Nar5''.1' .

41,

(3 + 5i) + (-2 + 41) = (3 + (-2)) + (5 + 4)i = 1 + 91.
,

4.

If'we represent the complex numbers As column vectors, we find their sum
4-1

Uy adding corresponding entries; thus,

4.

[1 )

5 4 91

This suggests the pattern used in adding matrices lpf the same order.

s The sum of two such matrices is obtained by adding the individual entries in

corresponding positions. For example, 4411.

2 3 1 r4 2 1] [-2 5 2

[-10 4 1 3 2 3 2

ILL

a

Since we shall not even 'give a rule by which matrices of different orders

could be added, we shall add two mat'rices only if they are of the same order.

Two matrices that have.the same order are said.to be conformable for addition.

The sum has ihe same order as the two addends.

Definition 1-3. The sua A + B of two m Xn matrices A and B is

j
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A

1

.
- i

...
, 4

.
I

,
the m X n....matrix C such 'that the elgment e.. in thek i-th row arid j-th

f __-/ i j

column cif C is equal t9 the sum a + b of the element a and b

in tht i-th row and i-th column of A and B, respectkvely.

Thus,

c,

[bij]mxn
-. v°

.

-1

V

S.

1 i ...

Foroinstanda, .

.
-

. ,----t t .

Si -- ...
... "*".

. 21 22

a aall 12 Nibll 2

a31 a32 k 31 32

b ID

b b
21 422

=
.

an + bi) a12 + b12
a b

N. + b31 a32 + b._
21 . 21 . 22 22a' +.b '.. c c..:

.
cll 12

.21 z2
c31 c32

# tr

... -5Z -
1 IL,

yIf we consider all m X n matrices, with m and n fixed, as constituting'

a set ,Sm,n, and if A and. B are elements of Sm,n, then A + B is also

an elemel of this set. That is, if .A r Sm,n (read "A is an element of

S' .')*) and B c .Sm,n, then (A +.13) Sm,n.m,n ,

In ..the Agebra of 'reak. numberso R, %the equation

1

,

is i;atisfied- for all a c R (this time, read "for all a e R" as "for all

a + 0 = a

-. -
ellethents a of R") . Accordingly, we say that 0 is the identity element for

addition in R. In the algebra of matrices, the matrices all of whose entries

. are 0 play a corresponding role. Thus,

.

2 3 -] [0 0 2 + 0 3 + 01 [ 2 3

-14 0 0 ' -4 + 0 4 + 0 -1 4

Such a matrix is called a zero matrix and is denoted by %O. If the order

m X n is significant, we write 0
mxn; or,. if the matrtx is square, we might

write0n,where n tftdicates'the order of the matrix. Thus



ft

..6

1X2 L
= 10 01 ,

-the equation

02x3
-0

0 0 0
0 0

0 0 0

0.

0 0

ft

,

. . . , AmXn + 0
mXti

= A
mxn

...... .

%

clearly is valid.for all Ar4,xn.
6.

vo.The addition of, matrices is a commutative operation, as we can readily,

1

.

verify. Thus,

a

a 4all l2 13

[

b b b bll 12 13 ll

a a ' :f b b4 ,

:12

21 22
ii,

23
ir
21 22 23 2L 22 23

:13 all 412 al3

a
21

a
22

a
23

.

In particular, the sum of the.two matrices on the lbft is a matrix having

a + b as element in the first row and second coluMn, and the corresponding

element f the sum on the right is 1)12 + a12. But

a
1.2

+ b12 b12 + a
121

by the commutative law for the addition of real numbers.

The foregoing observation holds generally, of course, io that we have the

following resu,lt: ,

Theorem:171. If the matrices A and B are conformable for addition,

then they.satisfy the commutative law for addition:

)

Proof. We have

4Pis

p.

A + B = B + A.

9 r)
C..,

N.
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14

4 ')r

A + [aii] +.

e
..

=. [aii 1-.1- .I..11

da Ni + aii.]

AO :1'3' Ni] + E,till #-

. 4$ + A.
. :

\e .c
4 . . i

Thus, in terms of our usual notation, the element in the ifh-row and
,

jth column of the sum on the left is a + b.',' and the corresponding
. .. ij

element of the sum on the right is bij + aij, But

a +b =b +a
i1

by the commutative law for the addition of real numbers; hence the theorem

follows,from the'definition (Definition 1-2) of the equality of two matrices.

The addition of conformable matrices is also associative; that is,

For example,

and also

[ 2
4

=

.

4[
2

A + (B + C). .2 (A + B) + C.

11 41 (

3 11 +
0 6

3 11 4.
0 6. .

5 1

0
7]

f

[-1 2 01 [ 1
02 0 1 5 1 2

] )

2 41 [ 2 5 51

1 3

.
1 1 9

)

4

[.1 2 ,01 ).+11 0

2 0 15 1 2

1

1 0 [ 2551
5 1 2

=
1 1 9

.

/ .

.

4,
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a

We can state the associative property as a theorem and prove it, as'

,16

A

4

,o

top

Cr.

follows: at.

15

,

Thegrem 1-2. If the matrices AL, B, and C- are bnfiormable for addition,

then theiriatisfy thita6ociative law for additIoty:
. t

h
2 -A + (B C) = (A + B) + C...

Proof. We note that, An terms of our usual notation, the element'in the

ith row and,jth Column of the sum on the left is aij (bij +clj), and

the corresponding element of the sum on the right is (a
ij ij

) + c
ij7

But

41.

o.

a +(b . + c ) at (a + b .cij

You can complete the proof of:theorem 1-2 by teliling why this last equality is

valid for all real numbers a. b
ij

- and c
ir and why this equality

'

implies the matrix equality

A + (B + C)... (A + B) + C.

Since 4t is immaterikil'in which order the'matrices fre added, we write

A + B + C for either expression:

A + (B + C) = (A + B) +C=A+B+ C.

Once we know how to add numbers,'it is usLI'l to consider subtraction. Ydu

recall that the-negative, or additive inverse, of the real number a is

denoted by a. It satisfies ,the equation

a (e) = 0-

Subtrdttion of matrices arises in a similaf manner.

sA,



.. 4 - 4,-;11. ., ."-. 4 ./ ..
. , *--____. . './. -

.", y . 1 r r .
, r . . r

p6finitiio Lot- A e an mx ..EL.--matrix. Then the 'negative of A,
r - 41` ,

4
A 71 \ -7-- 41

written -A, is the m,X n \matrix. each of whose entri is Vie negative of
.4,

0, .

the corresponding )ebtry of A. . .
a-

OIP 7
"

. I
*

De f i tion 1-5: If . A and 41S- ism twig -13; )1 n matrices; rthiN'n the
V s . . .

difference of A and B, designated by 4 7 ii, ,is the,-sum of the ma`trices
0. *, , -. , $ ., .

..

A and the negative B.
. _

,A. '- ,

f #
%e 00 I

Thus, .for A + (-B), where A. and, B ) are matrices of equal Orders we

write A - B and say tha4.the 1symbols indicate that B is to be sUbtracted

from A. For example,

and

.

0 1 -2] 0 5

4 6 3 4 1 1 -4 -2
2 1 3

,

1 11

[t-i-c 4 [c 2 [Qt

yow we Can easily prove the following theorem:

410:

I.
a

Theorem 1-3. If ' A and B are m X n matrices, then

it .(a)

(-A) A, //
(c) 0 0,

(i) (A + B) (A) + (B).

Proof of Theorem 1-3 (a). The entry in the i-th row and j-th column of

4
1

ts



4

-A is, by definitlon, -a
ij

. Thus the entry.in the i-th row and i-th column

of A 4- (-A) is a + ( ). But/ a
ij

+,(-a ) 0. Hence,-every entry-aij
ij

of A + (--A) is zeroCthat is, A4.(-A) fs tht'zero matrix.
V.

4 . .

%
The proofs of the remaining parts are similar and are left to the4student

.-
.-4

.as exercises.

1. Find values
1

x,,

Exercises

)

and b that satisfy 4tbe matrix relationship

a +.1

[

x.± 3

b - 3

'2y - 8

4x +

3b

.16

0

-3

2b + 4

-

2x

-21_

"4.

2. If

3 2 1 -3 4 '8-

A =
4 -5 6

and B =
-2 6 -1

,

*,. 6 ,11 -3 0 2 3

4 6 8
%

4 -1 8 .

determine the entry in the sum A +-B that is at the intersection of

(a) the 3rd row and 2nd column,

(b) the 1st row and ard column,

(c) the 4th row and ltt column.

C9ppute

4. Compute

[1/2 [1./6 1/7

1/4 1/.5 1/8 1/9

F.

4

17



a. a

. .

5. Compute

1/2 1/3 1/4 1 0 0

1/5 1/6 1/7 + 0 1 0

1/8 1/9 1/10 0 0 1
4WD

x y
=1,

z 7Y

-
-z

p s t4 1s t
w U V W 1Na

6. (a) DoeS4the sum

make sense?

(b) Does the sum

!MN,

3

1

3

3

1

3

2

3

1

2

3

1

1..

2

2

t1.

1°
-1*
3

2

+ 0
2

+ 0
3

make sense?

(c) What'is the latter sum?
1

7: Cmnpute

a:*

,

=111.

.14

04. -

a 0

=1.

1 0 3 2 1 1 3 , .
s's

0 1 4 1 8 14 8 6

1 0 9 6 14 1 + -2. 11 11
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8. ,Compute

2 3 9 8 7 0 0

4 6 + 6 5 4 0 0

7 8 9 3 2 1 _0
0

9 . Given

11.

1 2 2 -1

A = 3 4 B 3 -2

5 6 0 1

compute the following:

(a) A + B,

(b)- A + (B.+ C),

(c)

0.

10 10 .10

10 10 10

1_ _10 10 10

, and
C\7

1

-2 -

-

(d) (A B) c,

(e) (A + B) + C,

(f) B - A.

10. (a) In Exercise 9', consider the answers to parts (b) . and (e). What

law is illustrated?

(b) In ExeiciA 9, consider the answers to parts (c) and (f). What

conclusion can be drawn?

(\.

11. Prove Theorem 1-3.(b).

12. Prove Theorem 1-3 (c).
S.-.

13. Prove Theorem 1-3 (d).
4

.

14. Assuming that A and B are conformable for addition, prove that

At + Bt = (A + B).

1-5. Addition of Matrices (Concluded)

The theoremo given in Section 1-47 include exact analogu s of all the basic

4

LaWS of ordinary algebra, insofar as these laws refer to additioff and subtraction.
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We know that all of the more complicated algebraic laws concerning addition

and subtraction are consequences of these basic laws. 1Since the basic law of

the addition and subtraction of matrices are the s
.1

111e as the basic laws of the

addition and subtraction of 'ordin4y
4
algebra, all the other laws for the

addition and subtraction of matrices must be the same as the corresponding laws

for the addition and. sUbtraction of numbers. We can state this as follows:

Insofa'r as only iddition and subtra6tion are involved, the algebra of'

t matrices is exactly like the ordinary algebra of numbers.

So you do not have to study the algebra of 44dition and subtraction of

4ma
,

trices you already know it: ut now the algebra that you already know

4

/ has a new and much richer content. Formerly,ti coUld be applied only to

numbers. Now, it can be applied to matrivis of any order. Thus, we have

obtained a very considerable result with a very small effort, simply bY

obsez4ing that our old algebraicslaws of addition and subtraction apply not

only to numt;ers, but also to quite different kinda of things, namely, matrices.

This yery powerful trick of putting old results in new settings has been used

many times, and often with great success, in the most modern mathematics.

A good example of the general prinaple emphasized abovp)is provided by

the following problem. that A- and B are known matrices of the

same order. How can we solve the equation

X + A 2.= B

for the unknown matrix X? The apswer is easy. We do exactly what we learned

to do with numbers. Add the matrix A to both sides. This gives

".Since A + (A

X + A + '( A
,

B A.

,and + 0 X, we have



4

This is our solution.

1. ,Solve the equation

C.

bar the natrix X.

2. Solve the equation

X B A.

f4

Exercises 1-5

[ [1 9,

o 1

.0

) X + 0

[0

1

1 0

t.

for the. matrix X.

3. If [x
1
x

2 3
[2-6 0 2]

4. If

5. If

1

2

1

0 =

,0

= , 1

1

2

x2

oj
1

Y 2

2

3

4

3]

1

2

3

2

3

4

determine [x
1

x'
2

y

1determine e

deterMine xl, x2, yl, and y2.

6. Prove that if thelmatrices A, B, and C are conformable for addition,

then' (A + C) (A + B) B.
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7. Is the equation

1

0

0

2

0

0

3

4

1

1

0

0

0

3

4 r1 2

2

40'

valid?

1-1.6. Malt plication of a Matrix by a'Number

2

Once e know how to add numbers, it is customary to define 2x as the

sum x +x, 3x as the sum 2x + x, etc. Fractional parts of x are defined

4

by requiring that (1/2)x + (1/2)x . x, (1/3)x + (1/3)x + (1/3)x x, etc.

All of this can readily be done with matrices. If we add two equal matrices,

the sum is clearly amatrix in which each entry is exactly twice the cofresppnd-

ing entry in the two given matrices. Thus

2 3 2 ,3 .. 4 6 2(2) 2(3). 4 .

[--1 0
]

.L4 0 -2 0 2(-1) 2(0)

Likewise, for three equal matrices wal have

1-1+ [ 3] 2 31 6 [3(Z) 3(31
-1 0 -1 0 [-1 3(-1) 3(0)

4

Bach of the above sums may be considered to be the product of a number and

a matrix. 'Lle write

2 3] 4 6.1
2

[-10 -2 If;

A

3. [

6 91 ,

-1 0 [73 P`

31

4

*



The equation

st.,1 or,

defining th-e4CaTrIc (1/2)A,, learly satisfied by the matrix each of whose

entries is exactly, 11.2 the corr fiponding entry of A; the equation

1
1\

1+-
3

-3- A +-A....A

defining the, matrix '(1/3)A, is learly sat.isfied by the matrix each of whose

entries is exactly 1/3 the corr sponding enry of A.

These considerations lead us to make the.following general definition.
lir

Definition 1-6. The roduc cA Ac of a number c and an m Xn

matrix A is the .m N:n matrix B such that the element b
ij

t-th

row and i-th column of -B is eq al to the product ca
ij

oc the number c

and the entry. a
ij

in thejith ow and j-th column of AL.

Thus,

For efample,

c{a = [al c
caiJm imxn [.ij m xn.

a
11

a
12

-ca

11
cal2

c a
21

a
22

= c a21 ca
22

a
31

a
32

ca
31

ca
32_

Note that here we have defined the product of a matrix by a number, not

the product of two matrices. ft is possible also to define the product of two

matrices; this will be done in Section

0



a

Now we may state the following, theorem about, products of matrices by

numbers.

I

Theorem 1-4. If A and B are m x-n 1#tric4, and x and y are

numbers, then .

Vt.

(a) x(yA) = (xy)A,

(b) (x4y)A=XA+yA,

(c), C-rIA - A,

(d) x(A + B) = xA + xB,

(e) x 0 um 0,

(0 0 A 0.

Part (e) states that the product of a number and the zero matrix.is the

zero matrix, and part (f) states that the product of the4rzero number and-any

matrix is the zero matrix.

Proof of Theorem 1-4 (d). The entry in the i-th row and i-th column of,

thematrixA+Bisaij +b..The entry in the t-th row and j-th column

of matrix x(A + B) is therefore, by definition, x(a. + b
ij

). Now the entry

in the 1-th row and j-th column of the matrix xA is x aii; that'in the

17th row and j-th column of the matrix xB i x bij. Thus the'entry in

theithrowandj-thcolumnofthematrixxA+xBigxa.+x b
j

. Since
i

entries are numbers and, for all numbers, a(b + c) = ab + ac, we have

x(a.. =x +xb..,
13

aij
13

so&that each entry in the matrix x(A + B) is the same as the corresponding.

entry of the matrix xA + xB. Hence,

3 3
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.- -.A.

x(A + B) = xA + XB.

The other parts of the above theorem may be proved in aidimilar way.

When we studied the laws gdIferning the addition and subtraction of

b

matrices, we saw that they were parallel to the laws governing addition and.

25

subtractiotrin ordinary algebra. he situation when we come to 'the multiplica-

,,tion of matrices by liumbers is rather similar, but not exactly the same. The

various parts of Theorem 1-4 resemble the basic algebraic laws for multiplica-
.

tion very closely. Thus, m;any of tile more complicated ordinary algebraic laws

and procedures governing multipliCation still remain correct for expresaions

involying the multiplication of matrices by numbers. The difEerencd is that

the product of a gUmber Ay a number is a number, but the product of a matrix
,

iJ

by a nUmber is fiot a number but a

We are now able to solve same

matrix.

subtraction, and multiplication by

Matrix equations involving addition,

a number. Let us look at an example.

Suppose we want to solve the equation

-2 X + 0 .1L 2

0 0 1

1 2 0

- 3x + 0 0 0 .

0 0 1

6

We first perform the indicated mulEiplication by -2, in accordance with part

(d) of the above theorem, to get

-2 -4 -6
^

1 0 0

2X + 0 -4 - 3x + 0 0 0

0 0 -2 0 0 1_,

Then we add, 2x to both sides of the equation to obiain

3
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t's -2 -4

0 -2

0 0

-6

-4' a 3X + 2X +

-2

REM

1 0 0

ti 0

0 0 1

Next we use part (b) of the theorem to find that 3X +'2X a 5X, so'that

2 -4 0 0

0 -2 -4

0 0 -2

5X + 0

1

0 1

Adding 4

I If 0

0

0

0. 0

0 1

Itt

to both sides, we find that,

-3 4
0

[

-2 -4 mm 5X.

0 0 -3

NUltiplyilg both sides/of this last equation by 1/., we see by part (a) of

the theorem that

-3/5 -4/5 -6/5

X = 0 -2/5 -4/5

0 0 -3/5
S.

This is.our solution.

A

/",



1. For

Exercises 1-6

[2 1. -1 3 0 5] [5 -1 0]
= B = , and CA =

1 0 4 - [6 9 -4 7 8 -1

determine the result of the following operations:

' (a) 2A - B 4:1 C,

(b) 3A - 2C,

2. .For .

2 2,_ 2

A = .2 1 -3

1 0 4

(c) 7A 2(B - C),

(d) 3(A - 2B + 3C).

3 3 3 4 4 4

B = 3 '0 5 , and C = 5 -1 0

6 9 -4 7 8 -4

determine the reul of the4ollowing operations:

(a) 2A B (c) 7A, - 2(B - C),

(b) 3A 6B + 9C, <d) .3(A 2B 3C).
/

3. Let A, B, and C be the matrices ofkExercise 2. Solve the equation

1
(X + A) + 3(X + (2X + B)) + C,

2

giving all the steps In detall and justifying each step.

4. Let A, B, and C be ther rices of Exercise 2. Solve-the equltion

, 2(X + B) = 3(X 4- (X/2 + A)) + C.

5. Prove Theorem 1-4 (a).

6. Prove Theorem 1-'4 (b).

.1-7. Multiplication'of Matrices

Thus far, we have defined and studied the addition and(subtraction of

4

27
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matrices and the multiplication of a matrix by. a number.' We still have not

defined the product of two matrices. Since the formal definition is somewhat

complicated and may at first seem odd, let us look at a simple practical problem

that will lead us to opirgte with two matrices in the way that we shall

ultimately call multiplication.

In Section 1-1, the nUMbe of tullies .and the number of speakers ued in*

assembling three different odels of TV sets were specified by a table:

Number of tubes

Number offspeakers

Model A Model B MOdel G'

13 18 20

2 3 .

This array will be called the parts-per-set matrix.

Suppose orders were received in January fori 12 sets of model A,,24 lets

of model B, and 12 sev of model C; and in February for 6 sets of model A,

'!7

12'of model B, and 9 of model C. We can arrange the information in the.form

of a matrix:

January February

Model A 12 6

\Model B

Model C

24 ,

12

12,

9

This will be carted the sets-per-month matrix.

To determine the number of tubes and speakers required in each of the

months for these orders, it is clear that we must use both sets of information.

For instance, to compute the number of tubes needed in Janu ry, we multiply each

4

entry in the 1st row of the parts-per-set matrix by the corresponding entry in

the 1st column of the sets-per-month matrix, and then add the three products.

Thus, the number of tubessrequired in January is

3

..710
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*-43(12) + 18(2) +.20(12)% 828.

To compute the number of speakers needed in January, we multiply each entry

in the 2nd row of the parts-per-set matrix by the corresponding entry in the

1st column of the sets-per-month matqx and then add the products. Thus, the

number of speakers for January is

2(12) + 3(24) + 4(12) 1 144.

For February, first we multiply the entries from the lat row of the parts-per-
il')

'set matrix 'by the corresponding entries fram the 2nd column.of the ;ets-per2"'.

1 month matrix And add to determine the number, of tubes; secondly, we multiply .

the'entries from the 2nd row of the ?arts-per-set matrix by the corresponding

entrieeC from the 2nd column of the sets-per-month matrix and add to determine

the number of speakers. Thus the numbers of tube's and speakers for February are,

respectively,

-and

13(6) 4:18(12) + 20(9)-= 474,

2(6) + 3(12) +4(9) =

We can arrange the four sums in an array, which we shall call the part

per-month matrix:

Jinuary February

Number of tubes 828 474

Number of speakers 144 84

Can we now represent our "operation" in equation form? Let us try:

[13 18 20]

2 3 4

12
828

24 12

[144 41

. 84
12 9

(1)
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_We.have "multiplied" the parts-per-set matrix by the sets-per-month matrix to

get just what should be expected, the parts-per-month muatrixt

Note that, in Equation (1), 828 equals the sum of the products:of the

entries in the 1st row of the left-fiand factor by the corresponding entries

in the 1st column of the right-hand factor. Likewise, 474 equals the sum of

the products of the entries in the 1st row of the, left-hand factor by the

corresponding entries in the 2nd column of the right-hand factor, and so on.

Consider the "product" matrix

in the symbolic form,

828 474]

[144 84

[all a12

a
21

a
22

The subscripts indicate the row and column in which the entry appears; they

also indicate fthe row and the co],umn of the two factor matrices that ari

combined to get that entry. Thus, the entry a
21

in the 2nd row and`ist I(

4
column is found by adding the products formed when the entries in tke 2nd

row of the left-4mnd factor are multiplied bi the.corresponding entries in the

1st column.of the right-hand tact6r. The most concise description of the

process is: iiiultiply row by column."

The description, "MUltiply row by column," of the pattern in the f4tegoing

simplp practical problem.serves as oniguide in establishing the general rule

for the m4tipliCation of two matrices. VerY simply the rule is to multiply

entries of a row by corresponding entries of a column and then add the products.

Thus, given two matrices A and B, to find the entry in the t-th row and.

j-th column of the product matrix AB, multiply each entry in the t-th row of
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the left-hand factor A by the c9rresponding entry in the;j-th column 'of the

right-hand.factor B, and then add all the resulting terms. Since these must

be an entry in each row of the.left-hand factor.to match with each entry In a

column of the right-hand factor, and conversely, the product j.s not defined

4

unless the number of columns in the left-hand factor is1equal to the number of

rows in the righthand factor. When the number of columns in the left-hand

factor equals the 011ir of rows in the right-hand factor, the matrices are

conformable for multiplication.

A diagram can aid understanding; see Figuie 1-1.

A

ige

_t
B

n

4 V

Dl

AB

n

Figure 1-1: Matrices A and B that are conformable
for multiplication. The number of columns as A must
be equal to the number of rows of B.' Then the product
AB has the same numb,er of rows as A and the same
itumber of columns as B.

I
An entry in the product AB is found by multiplying each of the n

entries in a row of A by the corresponding one of the n entries in the

column of B and taking the sum; see Figure.l-2.

31



i4h row of A 0

A

.....k

j-:th

column

I B

I

,

---1Position of
entry cij

C AB

1),

4 40b

$ Pigure 1-2. Determination of an entry in the product
AB of matrices A
multiplication .

Thus, to multiply ,

1 2

A [4 5 6

7 8

and B

by

we first write

that are conformable for

1 2'

OM,

3

4 5 6

7 8 9

el

B a. 2 1.

L4 1_

1 0

2 1

4 1

To determine the entry in the 1st row and 1st column of the product AB,

4 4



4

we compute as'follows:

4.

ft

1 + 4 + 12 17

DetermilAg one .entry of the product after another In this wsy, °we finally

obtain the complete answer for the produpt
,

1.

17

4 5 6 38 11

7 8- 9 59 17

(Check each of the entriep of the.snswer yourselft) ahat is,
4

AB

17

38 11

59 17
4

33

To get the answer, 18 multiplicatieT and 12 additions of pairs of numbers are

en
necessary.

Although it may be a bit confusing at first, we place the factors adjacent

to esch other in the following examples since this is ehe arrangement usually

employed:
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(a)

1

3

-1

2

1

2

[ i

4
2

0
3]
1

1(1)

3(1)

-1(1)

+ 2(4)

+1(4)

+ 2(4)

.1(2)

1(2)

-1(2)

+ 2(0)

+ 1(0)

+ 2(0)

1(3)

3(3)

-1(3)

+ 2(1)

+ 1(1)

+ 2(1)
=wit

-JP
9 2 5

,= 3 6 -0--11

7 -2 -1

\\--1

(b) [1 7 31

1.

!= [1(2) + 7(4) + 3( 1) [4.3] ,

(c)

1[

2-

4 [1 7 3

1

Let us now proceed.t\Vine multiplication formally.

2(7) 2(3) k[2(1)

4(1) 4(7) 4(3)

1b.) 1(7) .13)

[

2 14 6

= 4 28 12

1 7 3_

Definition 1-7. L'et

A = [a an& B [bjllpxn

sr.

be matrices of order m N:p ,and p x no respectiThe product AB

is the matrix of order mix: n, og which the element in the i-th row anc 1. the

i-th column is the sum of the products formed by multiplying elements ofthe

i-th row of A by corresponding elements of the i-th columnbf B.

aieThe definition of xe product of two matrices can be e ressed in terms



9

of the " 2: notation" for sums. Recall that, in the " notation," we write

the sunk

S X1 + X2 + J- + Xn f

. of n numbers as

In this notation, the sum

A

is expressed as

S Xk.
k=1

a b + f b + + a b.,

lj . 1.2 2j in nj

2: a
ik

b
kj

4
,km1

This notation enables us to express Definition 1-7 more compactly:

I.

Definition 1-7'. Let

A ix [a and B [bjk] xn

35

be matrices of order m X p and p X n, respectively. The product AB is the

matrix of order m X n, given by

AB [ai.l]mX p [bjk] pxn [ aij bjk)1 mxn, [c. Xr*

Note that we have defined the product of twomatrices only when the number

of columns of the left-hand factor is the same as the number of rows of the

right-hand factor. -Also note that the number of rows in the product is the
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1

same v the number of rows in the left-hand factor, and that ihe number of

columns in the product is the isame as the num4er of columns in the *t-hand

factor. .

1. Let
4

12 04 93

k 2 3

4 5 6

7 8 9

1 0 1

Exercises 1-7

.o

0 -1 1

-1 0 '11

, and D 2 2

-3 -3

State the orders of each of the following matrices:

(a) AB, (e) BD,

(b) DA, (f). D(AB).,

(c) AD, (g) (CB)(DA), \\

(d) CB, (h) B(DA).

2. erfonn the)following matrix multiplication, where possible:

t- (a) [ I 2 3 4]

(b)

1

3

4

1

2

3

4

.4,

OS

11.



3. Let X =

(c)

4

6

3

[4..,
1

I.

2

1

5

2]
3

3 4]
6-2 0
3

2 3
[-1 -2

0 2
[0 2

1

5

4
0
i

04.

3
-1

4
6

{ 1 2 3 [4`.
O. 2 -1 6 1 3

2 -2 4], Y = [0 1

U 0 and W = -1
s 1 2 ,

4

4.

Compute the following:

(a) 513X, (d) (U - W)(X + Y),

(14 (5W)(3y), (e) XU + YW,

(c) 5XU (2X - Y)W, (f) (X Y)(U W).

4. 1,Vrform the following matrix multiplications:

(a) [1 0011 [62 40]

(b)

1 0 0

0 1 0.

0 0 1

X1 X2 X3

y y y1 2

J.

z
2

z3
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.10

5. If

A =

I.

(c)

(cI)

rl
81
t

1

al
0

r2

82
t

2

0

a
2

Oi

0 0

(e) 0 bl
0 0

I. 2 1

(f). 2 1 2

1 3 1

0 a 2
(g) 1 0 0

0 0 1

.0*

2

r3 2 0

83
0 2

t
3

0 .0

0
-

Q b
1

ci

0 xi
-0 Y1

0 zi

a
2

b
2

C1

tom

'10 e

1 0 0

0 0 1

1 2 1
1 2

1 3 1

B = [14 (11

1

test the rule that (AB)C = AOC).*

ft

and C =

at

1

2

3

8



it
A =

_

I. 2

4 5 6

7 8 9
-

and B =

,-.2

_

1. 0

-I 0 1

_
0 -1

. 39

.(a). AB, (f) A(B Bt),
t 411.(8) A(B - B-4), e

(c) BB
t, (h) AB

(d) (AB)Bt, .(i) AA - BB.1BtBt,

(e)" A(BBt), (i) (AA)A.

...
7. Let-C-1 denote the identity matrix of order 3 (see 4ge 52).z..

I. = 0 1 0 ..

%

0

)

.

. 0 0 1
..

..
-

... ,. .

P

N...... .. )4,
,

2 Let A and B be as in/Exercise 7. Compute AI,' BI, and BtI. Compute./

1010

(

(AI)I and ((AI)I)I. A

ft

8 . Let

A =
Ll -3 2]
1 2 1

Find (AB)t 9fid B
t
A
,t

.

[1and B = 2 .

1.

9. For. a certain manufacturing plant, the following information is given:

41%

Part 1 Part 2 Part 3

Cost 2 3 5



4

'04

Part 1

Part 2 3

Part 3 7

Subasseinbiy 1 Subassembly 2
4

4 .

2

Mfdel 1 Mbdel 2 Model 3

Subassembly 1/ 2 1 2
1

Subassembly 2 3 4 5

It
Day 1 Day 2 Day 3

Modelll 7 8' ( 8

Mbdel 2 3 4 5
a

Model 3 3 5 6

Determine the parts-per-model matrix and the cost-per-day matrii?..

11. Properties of Matrix( Mnitiplication

40'

We have learned that insofar as only addition and subtraction are involved,

the algebra of matrices is exactly like,the ordinary algebra of num6ers; see

k

Section 1-5. At this moment, we might be doncerned about multiplicat iThce

the definition seems a bit unusug].. Is the algebra of matrices like The

ordinary algebra of numbers insofar as multiplication is concerned?

Letlus consider an example that will yield an answer to the foregoing

question. Let

h

A =
[0 01
1 0

and . B =
[0 1]

L.

we'compute AB, we find AB =

factors and compute BA, we find

0 0

0 1
Now, if we reverse the order of the,

BA =
[10 °O]

Thus AB and BA are differclent matricest

For another example, Let

4ra*
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7%.

\

Then

AB =

while

BA so

Again

1

3

-1

[ 1

4

AB

2

1

2

2

0

1

= 3 1

-1 2

and. B

1(1) +.2(4)
1 2 1

um 3(1) + 1(4)
4 0 1

-1(1) + 2(4)

1

[1(1) + 2(1)

4(1) + 0(3)

-,. [1 2 3

4 0 1]

9

1(2) +

3(2) + 1(0)

-1(2) + 2(0)

41

4

+ 2(1) 9

+ 1(1) .= 7 6 10

+ 2(1) 7 -2 -1

+ 3(-1) 1(2) + 2(1) + 3(21 [4 11
+ 1(-1) 4(2) + 0(1) + 1(2) 3 10 '

and BA are different matrices; they are not even of the smne.order:-.

Mus we have a first difference between macrix algebra and ordinary

algebra, and a very significanerdifference it is indeed. When we multiply

numbers, we can rearrange facto:s since thecommutative law holds: Fbr all

x R and y e R, we have xy = yx. When we multiply matrices, we have'no

such law and we must consequently be careful to take the factors in the order
1-1c

given. We must consequently distinguish between the resultlei multiplying B

on the right by A to get BA, and the result of multiplying .B on the left

by A to 'get AB. In the algebra of numbers, these two operations o "right

4
multiPlication" and "left multiplication" are the same; in matrix a ,they

are not decessarily the same.

to
Let,us explore some more differences: Let

[ 3 11

36 2
and B

[-1 3] A
-9

9

Patently, A # 0 and B 0 0. But if we compute AB, we obtain
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'6 2

1] [-1 3

3 -9
0[ 1911;11

] 0 0

thus, we find

Then

AB = 0.

AB =

-1

Again,

1 2

1, 1

2-1 4

1 2 0

1 1 Li

4 0

let

0

0

0

0

0

1

and

0

0

4

0

0

9

B = .{.1
0

0

1

vm,

0

0

0

0

0

4

0

.0

0

0

0

9

-/

0

0

0

.

'Tie second major difference between ordinary algebra and matrix algebra is

that the product 'of two matrices can be a zero matfix without either factor

,&ing a zero matrix.
)

ihe breakdown for matrix algebra of the law that xy = yx and ofothe law

that xy only if either x or y is zero causes additional differencea.

For instafice, for real numbers we know that if ab ac, and a 0 0,

then b c. This property is called the canceDlation law for multiplication.
A

Proof. We divided the proof into simple'steps:

(a) ab = ac,

(b) ab - ac = 0,

(c) a(b c) = 0,

(d) b 0,

(e) b = c.

fe^

For matrices, the above step (d) fails and the proof is not valid. In

fact, AB can be equal to AC, with A 0 0, yet B 0 C. Thun, let

\
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r

Then

and

but

A = 1

2

1

4

0

0

0

B

1

1

2

2

1

2

3

11 ,

2

and C =

2

1

1

3

1
1

3 4 1

AB = 2 3 2 .= AC,

3 2 7

A 0,

Let us consider another difference.

have at most two

equation xx = a.

We know

square roots; that is, there are

that a real

at most two

Proof. Again, we give the simple steps of the proof:

(a) ,Suppose that yy = a; then

(b), xx = yy,

(c) xx yy = 0,

(d) (x y)(x + y) = xx + (y x + x y) yy,

(e) yx = xy.

number a can

roots of the

(f) From steps (c) and (d), (x y)(x + y) = xx yy.

(g) From steps (e)-and (b), (x y)(x + y) = 0.

(h) Therefore, either x y = 0 or x y = 0.

(i) Therefore, either x = y or x = y.

43
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For-matrices, step (e) and step (h) fail. Therefore, the foregling proof

is not valid if we try to'apply it to matrices. In fact, it is false that a

matrix can llaveat most two square roots: We have 46

Thus 41e matrix

[
0
1 0] [

0
1 [1

-01-1 [
[0 iJ

o
oi i [ c

o. [o 1 '

fl 0] [71 14 [1 0]

[0-1] 0 1 0 1

1

[1 0]

0

hlis the four different square rodts

I

There are motet

.0.1(

iv-

=
0 fl, K =

0
Cl and L =

0]

0

Given any number

0 xl

x 0,

[ o xl

'we have

0

1/x 0 1/x 0

[1
.= 0 1

u

By giving x any one of an infinity of different real values, we ob,tain an

infinity of different.square roots of the matrix I:

[ 2 0 1/31

1/20] ' [3. 0 1
etc.

Thus the very simple 2 X 2-matrix I has infinitely many distinct dLquare
0

roots: You can see, then, that the fact that a number has at most two square

roots is by no means trivial.

5- 3

4.



Let

A =

Exercises 1-8

and B =
[-1

Cal'culate AB, BA, (AB)A, (BA)A: (BA)B, B(BA), A(AB), ((BA)A)B0

and ((AB)A)B.

2. Let

1 2 3 1

A 4 5 6 and B = -1[
7 8 9 1.

(-.0
Calculate: .

(a). AB,

(b)

(c) (AB)A,

4-

(a) (BA)A,

(e) (BA)B,
1

(f) B(BA),

3. Let A and B be as in Exercise 2, and let

1 0 0

= 0 1 0

0 0 1

Calculate AI, 'IA, BI, IB, and (AI)B.

4. Let.

A
0 2

Show by cotputation that

2
(a) (A + B)(A + B) 0 A + 2AB +B ,

.(b) (A + B)(A B) 0 A
2

B
2

,

and B =
0.11 2

(g) A(AB),

(h) (kBA)A)B.

(i) ((AB)A)B.

2 2
wheke A and II, denote AA and BB, respectively.

0



. s 46

141,

5. Let

ft

1 0 0 2 0, 0

A = 0 2 0 and B = 0 2 0
0

6b, 0 0 3 0 0 2

Calculate A
2

A B
2

, B
3

AB , A
2
B.

6. Find at least 8 cubd roots of the matrix

1 0 .

..,,[1 0

0 0 1

7, Show that.the matrix 0

A =

satisfies the eqU ion A
2
= 0. How many 2 X2 'matrices satisfying this

_equation can you find?
S.

8. ,,Show that the matri)C'

4

SF

satisfies the equation A(M) = 0.

70 0 O-

A .... 1 0 0

0 1 0
fr

1-9. Properties of Matrix Mbltiplication (Concluded).

We have seen that two basic laws governing multiplication in the algebra

of ordinary numbers break down.when it comes to malrices. The commutative law

and the cancellation law do not hold. At this pOint, you might fear a total

collapse of all the other familiar laws. This is not the case. Aside from the
Ir

two laws mentkoned, and the fact that, as we shall see later, many matrices do

not have multiplicative inverses (receiprocals), the other basic laws of
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ordinary algeb a generally remaifi valid for matrices. The associali7e law.

'i

. holds for the/muitiplication of,matrices and there are distributive laws th#t

unite addition and multiplication.

A few examples will aid us in understanding the laws:

el

Let

Then

and

Thus,

Again,

and

A(BC)

(AB)C

]1 0

[ Ed

t71
and C =

3 1

[1 ei [.1
1

L
3

C )

iJ
[

SA

ii )

3
211

[2 --2 4
3 1. [ 3 1 0 7

A(BC) = (AB)C.

A(B + C)
1

1

[ 1
1

0
1

CI

1

2

[ 21

-1

[ 1

21

1:

11,

47
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so that

(

AB +AC =

at

OT
1 3 1

0' -1 2 1

1 2 3 5 4

A(B + C) = AB + (1)

Since multiplication is not commutative, we cannop conclude from Equation

(1).that the distributive principle is valid with the factot A on the right-

hand side of B + C. Havinki..&1,ustrated the left-hand distributive law, we

now illustrate th* right-hand distributive law with the following exaiple:

We have

A

and

Thus,

fr

(B + C)A [23. [-31
1 1

4 d
2 1 CI[1 [3 T

6 ip 2

BA + CA =
[21 Oil [11. [-1 f] [1

1 1

.

[1

2 1

2

4 11 a [6 2
!]

(B + C)A = BA +CA.

oft

You mtght note, in passing, that, in the above examples,

4

itB +*C) 0 (B + C)A.

These properties of mstrix multiplication can be expressed as theorems.



then
N.

Theorem 1-5. If

[aid in' Xn' IrB = rb 1
L

and CnXp

(AB)C = A(BC).

PrOof. (Opttonal.) We hem

%It

(AH)c

BC

A(BC)

4

pXce

(kt bikc:)]nxq

a14
i=r1

(11 bjkckh)]N

Since the order of summation in a finite sum is arbitrary, we know tha t

aiibjI
k=1 j=1.

Hence,

Theorem 1-6. If

ckh = I E a4
Xq.

AB)C = A(BC).

k1 bjkckh)]
= mXq

49

N.

Att
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then

.A

A(B + C) as AB

mn,

+ BC.

[bild n p' and

Proof. (Optional.) We have

1- (B tsf. C) [bjk + c_d
n

MB + C) "2 aij (bjk 4- cjk)[
J=1

C {c jk nXp

Hence,

Theorem 1-7. If

I

[

ot i b + Ti a cal.) jk ij jk

[Pli m Xpl
ailb4k] + [ a iJca ' ' jia=1

..4

A(B C) " AB + AC.

m p

and A az [m]aB [ jbldn Xp nxp' C [cjid'
then (B C)A aa BA + CA.

Proof. The proof is similar to that of Theorem 1-6.

It should be noted that if the commutative law held for matrices, it would

be unnecessary to prove Theorems 1-6 and 1-7 separately, since the two
7 ;

statem4nli

A(B + AB + AC

41* 59



and

ci

. ..

(B + C)A = BA 4; CA

el

would say exactly the same thing. For Matrices, however, the two statements

I .
say different things, even though both are true. The order of factors is most

imporiant, since statements like

anod

A(B + C) AB + CA

(B + C)A = AB +-CA

. citn be false for matrices.
elen-n

Earlier we defined the zero matrix of oFder m X n and showed that it is

the identity nt for addition:

A + 0 '214 A,

'.*

where A is any matrix of order m X n. This zero matrix plays 4he same role

in multiplication of mitrices as the number iero does in the multiplication of

real numbers. For.example, we have \

:to
62.

[2 031. f0
0 = 0 01 4 0 0

Thedrem 1-43. For any matrix

7t,

we have

- A .2 [anxp iinxp

and Anxp Opxci Orixqomxn Anxp mxp

The proof is easy and is left to the student.

)

51
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^

liow we may be wondering if there is an identity element for the multiplica-

fition of matrices, namely a matrix that plays the Same role as the number, 1
.

does in the multiplication of real numbers. (For all real. numbers a,

la = a = al.) There is such a matrix, called the unit matrix and denoted by

the.symbol I. Tile matrix 12i namely,

I=
2 [0 \1

is caglad the unit matrix of order 2. The matrix

I
3

=

r

1

[0

0

0

1

0

0

1

414

is called the unit matrix of order 3. In general, the unit matrix of order

n is the sguare matrix [e..1.]
n)(n

such that eij = 1 for all i = j and

e = 0 for all i 0 j (i =1,2,...,n; j-=1,2,...,n). We now state the

important property of the unit matrix as a theorem.

Theorem 1.-8. If A is an .m X: n matrix,,then AIn = A and I A = A.

'Proof. By definition, the entry in the t-th row and i-th column of the

product Aln is the sum ailelj-+ ai2e2j + + ainenj. Sinte ekj = 0

whenelier ,k 0 j, all terms but one in this sair are zero and drop out. We are

leftwitha.e=a.j .Thus the entry in the t-th row and i-th column of the
Ji i

product is the same as the corresponding entry in A. ftence AIn.= A. The

-

equality ImA = A may be proved the same way. In most situations, it is not

necessary to specify the order of the unit matrix since the order.ois inferredr.

from the context. Thus, for

= A = AI
n

,



it

(4

we write

For example, we have .

and

\ 1. Let'

-

IA = A = AI.

4

3

5

4
6

[I 01
0 1

3

5

4
6

°

[1

0

O. 0
1 ,0

0 1

1

3

5

2

4

6

3
5

2

41
6

Test the formulas

a

Exerqses 1-9

B =
E-1

and C =
0 1

A(B + C) = AB + AC,

(B + C)A = BA + CA,

A(B + C).= AB + CA,

A(B + C) = BA + CA.

Which are correct, and which are faise?

2. Let

A =
1 0

and B =

Show that AB 0 0, but BA = 0.

0 0

t.

4

4

53



3. Show that for all ffiatrices A and. B of the form

I.

we have

4

and B [ d
--a c

AB = BA.

Illustrate by assigning numerical values to a, b, c, and d, with

40,c, and d integers.

4. Find the value of x for which the following product-1s I:

0 14x 7x
0 1 0

[x
0 1 0 I.

1 2 1 'x. 4x 2x

5. Let

.0 .0 0 0
A = 1 ,0 0 , B 0 0 0 and = 2 0,

- 0 1 0 1 0 0 1 2

Show that* AB = BA, that AC = CA, and that BC = CB.
4

6. Show that for all matrices A of the form
(

e.

we have

LY

A =
ab b

2

a 2
abl:

AA = O.

Illustrate by assigning numerical values to a and b.

7. Let
.tsr1
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D =
[0 1

1 0]

0 1
'

E =
0

Compute the following:

(a) DE,

(b) DF,

(c) EF,

.1 41,

and F
0

1

4

(d) ED, ./

(e) FD,

(f) ,FE.

55

If AB = BA, 'A and B are said to be anticommutative. '10-at conclusions
4

can be drawn.concerning, D, E, and F?

S.- Show that the-matrix A =
1

is a sOlution oi the equation
3 1'

AA 5A + 7/ it 0. 1

9. Explain why., in matrix 'algebra,

.(A 4.B) (A B) # B
2

,
\J

except in special cases. Can you devise two matrices A and B that

will illustrate the-inequality? Can you devise two matrices A and B.

"7 'that will illustrate the special case? (Hint: Use square matrices o

/ order 2.)

,

10.. Show that if V gnd W are n X 1 column vectors, then

t = Wty.
I.

11. Prove that' (AB)
t

BtA
t

, assUming that A and B 'are conformable fl

multiplication.
.1 rf

12. Using 22 notation, prove.the righthand distributive law.

1-10. Fields and Rings

In this introductory chapter on matrices, we have defined several

operations such as addition and multiplication. These operations differ

from those of eleMentary algebra in that they cannot always be performed ---

a
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thus, we do not add a 2 X,2 matrix to a 3 X3 matrix. 'Again, though a

4 x rmatrix and a 3 404 matrix can be multiplied together, the product

is neither 4 X 3 nor 3 X 4:-

Let us fix our attenrion on the set of all 2 X 2 matrices, which we
,OS

° shall denote by M. Thus any, 2 X 2 matrix is a member of M. Within ehis

system, 46 canialways aid and multiply, and the sum and product of two

4ements of M are also elements of M; we express these facts by,saying

th'at M is closed with reapect to addition and with respect to multiplication..

The reiults of this chapter will be used in Chapter 2 to check systematical

ly that the set M of 2 X 2 matrices has the following properties:

"",/
'The set is closed under addition.

Addition is commutative.\.

Addition is 'associative.

. There exists an idelitity element for addition (the zero matrix).

jhere exists an additive inverse for each element in'the

The set is closed

Multiplication is

under multiplication.
4

associative.

Multiplication is distributive ovei: addition.

We have noticed that this algebra is different in two important aspects

from the algebra of real numbers-, namely, the commutative law foc,multiplication

and the cancellation law do not hdld.

There is a third significant difference that we shall explore more fully

in later chapters but shall introduce naw. Recall that the operatiw,of

sulltraction was closely associated with that of addiiion. In order to solve

equations of the form

A + X = B,



i; is necesiary to define the additive inverse or negative, -A. Then we have

X + A + (-A) B + (-A),

,

X 4- 0 = B A,

X = B - A.

Now "division" is closely associated with multiplication in a parallel manner.

In order to solve ;equations of the form

:

AX = B,

It is necessary to defifie'the Muftiplicative inverse (or reciprocal), which is

denoted by the symbol A. . The defining property is
/'

A-1, A = la AA . jade

enables us to solve equation4.of tfiq form

Thus

AX = B.

-1
A (AX) = A-

1
B,

(A 1A)X =
*

A-
I
B,

X = A
-1

B.

Mhny matrices, other than the zero matrix 0, do not possess inverses; for

44

instance,

°. 1

and
1 0

/ 2

[ 6
2 3

57

are matrices Qf this sort, as we shal.l see in Chapter 2. This fact constitutes

\NN. a very significant difference between the algebra of matrices and the algebra

of real numbers.
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The algebra of real numbers has the following propertigs:

The set is closed under addition.

Addition is commutative.

Addition is associative.

There exists an identity element for addition (zero).

Ato

There exists an additive inverse for each eleMent in the set.

The set is closed under multiplication.

Multiplication is commutative.
"lb

Multiplication .is associative. .

sg-1

There exists an i4entity element for multiplication (one)/

There exists a multiplicative inverse for each element in the et
,

f--1.(zero excepted).

Multiplication is distributive over addition.

Mathematical systems having' the foregoing properties either of 2 >C2

matrices or of real numbers are sufficidntly important, and are numerous enough,

to be given special names. A set subject to two operations, called addition

and multiplication, and possessing the properties listed for real numbers, is

called a field. A set subject to two such operations and possessing all the

,: properties listed for matrices is called a ring.

Since tge list of deflning properties for a field contains all the

c-44.

ining properties for'a ring, irt follows that eve'ry ring is a field. The

set of 2 X 2 matrices' has one more of the field properties; namely, there is

an identity element I for multiplication. Accordingly we say that this set

is a ring with an identity element.

Wd shall meet other such algebraic systems in Chapter 2; and in Chapters

4 afid 5 we shgll dwell on the additional fact that,'as noted above in

/
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11.

Section 1.6, matrices can be multiplied by numbers. In' fact, in C4apters 4,

-and 5 we shall see that vectors--which are matrices of a.special sort--not only

constitute interesting algebraic systemsithey also have valuable physical

applications.

b-

.

sr

A

(

AVAA

ro.

a

.v

r.,

vik



Chapter 2

TRE.ALGEBRA OF 2 X 2 MATRICES

2-1. Introduction

In Chapter 1, we considered the elementary operations of addition and

multiplication for rectangular matrices. This algebra is similar in many

respects to the algebra of real numbers, although there are important differences.

Specifically) we noted that the.commutative law and the cancellation law do not

hold in matrix algebra, and that division is not arways possible.
A

With matrices-, the whole problem of division is a very complex one; it is

centered around.the existence of a multiplicative inverse. You all recall

that sUbtractiim arose When we were s'olving the equation A 4.* = B for the

unknown matrix X. We needed a matrix -A, which is called the additive in-

verse for A, such that A + (-A) O. A similar pattern develops if we -

consider the problemCq solving AX C for the unknown matrix X. This

statement is misleading, although it seems inn6cuous. Let us ask aquesticin:

If you were given the matrix equation

1 2 3 4
8 9 0-1
4 5 6 5

0 4 2 0

X
11

X
14

X41 X44

,

-
'1 0 2 0

0 1 0 2

2 0 1 0

0 r 0 1

could you solve it for the unknown. 4 X 4 matrix X? Oo noir be dismayed

if your iinswer is "No." Eventually, we shall learn methods of solving this

equation. However, the problem is comprex and lengthy. In order to under-

d this problem in depth and, at the same time,.comprehend the full

significance of.the algebra we have developed so far, we shall largely,.confine

our attention in this chapter to a speclal subset of the aet of all rectangular

matrices; namely, we shall consider the set of 2 X 2 square matrices.'

61
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-L.

When'bne stands back and takes a broad view of the many different kinds of

numbers that have been studied, one sees recurring patterns. For instance, let

us look at the rational numbers for a moment. Here is a set of.numbers that we

can add and multiply. Under addition and multiplication, the set satisfies

the following postulates:

The set is cloaed under addition.

Addition is commutative.

Addition is associative.

There exists an identity element for addition.

* There exists an inverse element for each element under addition.

.

The set is closed under multiplication.

Multiplication is commutative.

Multipli.cation is associative.

There exists an identity element for multiplication.

Thete exists an inverse element for each element, except 0,

under multiplication.

Multiplication is distributive over addition.
0 .

Since there exists a ra onal multiplicative inverse for each rational number

except 0, division (except by 0) is always possible in the algebra of rational
.7*

numbers. In other words, all'equations of the form

ax =.b,

where a and b are rational numbers and a 0, can be solved for x in

the algebra of rational numbers. For example: if we are given the equation
s.f t

2

3 x '

,,



or

ltiply both sides of the equation:by 3/2, the multiplicative inverse

2/3. Thus we obitiain

3 2 3 1

( 7i) -5)x

3
x

63

which is a rational number.

The foregoing set of postulates is satisfied also by the set of real

numbers, as we have noted previously on page 58. Any set that satisfies such a

set of postulates is called a field. Thus both the set of real numbers and

the'set of rationals, which is a subset of the set,of real numbers, are fields

under addition and multiplication. There are many systems that have this same

pattern. In each of these systems, division (except by 0) is always possible.

Now our immediate concern is to explore the problem of division in the set

of matrices. There is no blanket answer that can 'readily be reached, although

there is an answer,that we can find by proceeding stepwise. At first, let us

limit our discussion to the set of 2 X 2 matrices. We do this not only to

consider division in a smaller domain, but also to study in detail the algebra

associated

considered

1.

with this subset. A moretgeneral problem of matrix division will be

in Chapter 3.

Exercises 2-1

Determine which of the following sets are closed under the stated

operation:

(a) the set of integers under addition,

(b) the set of even numbers under multiplication,

f"f
( .1 tit

Oa"
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(c) the set (1) under multiplication,

(d) the set of rational numbers under division,

(e) the set of4)ositive rational numbers under

(f) the set of integers under the operation of

(g) the set of numbers A = (x 1 x > 3) under

2. Determine which of the following statements are true,

the indicated perations are commutative:

(a)

(b)

(c)

2 3 3 2,

4 2 = 2 4,

3 + 2 = 2 + 3,

(d) +.03 +,A, a and bs positive,

(e) ab =b-, a, a and b real,

(f) pq = qp, p and q real,

(i) + 2 = 2 +III,

3. Determine which of the following operations , defined for positive

integers in terms of Addition and multiplication, are commutative:

division,

squaring,

Addition.

and state which of

(a) x y = x + 2y

(b) 'x 1 y = 2Xy,

(c) x y = 2x + 2y,

(d) x I y = xy
2

,

(for example, 2 1.3 = 2 + 6 = 8),

(e) x y = xY,

(f) x-ly= +y+ 1.

4. Determine 'which of the following operations *, defined for positive

integers in terms of addition and multiplication, are associative:

(a) x y = x + 2y

(b) x y = x + y,

(c) x y = xy2,

(for example, (2 * 3) * 4 8 * 4 - 16),
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1-

(d) x * y

(e) x * y =

(f) x * y = xy + 1.

5. Determine if the operation * is distributive over the operation -E,

where the operations. -} and * are defined for positive integers in

terms of addition and multiplication of real numbers:.

(a)

(b)

(c)

x-Ey =

x y

xi-y=

x+ y,

2x + 2y ,

x+y+ 1,

x * y = xy;

1
x * y = y xy;

x * y = xy.

why is the answer the same in each case for lefthand distribution as it

is for righthand distribution?

6. .In each of the following eXamples, determine if the specified set,'under

addition and multiplication, constitutes a field:

(a) the set of all positive numbers,

(b) the set of all rational numbers,

(c) the set of all real numbers of the form a + b N/i, where

a and b are integers,

(d) the set of all complex numbers of the form a + where

a and b are integers and i

V

2-2. The Ring of 2 X 2. Matrices

Since we are confining our attention to the subset of 2 X 2 matrices,

it is very convenient to have a symbol for this subset. We let M denote the

set of all 2 X2 square matrices. If A is a member, or element, of this

set, we express this membership symbolically by A E M.

Since all elements of M are matrices, our general definitions of addition

and multiplication prevail over this subset. For example, we have

414A
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also,

[C1 2] 3 11
2 3 3 1 7 1.

For convenience of reference, let us repeat the defining postulates for

a ring, which we listed in the last section of Chapter 1. A ring is a set that

possesses the following properties under addition and multiplication:

4

The set is closed under addition.

Addition is commutative.

Addition is-associative.

There is an.identity element for addition.

There is an additive inverse for each element.

a

The set is closed under multiplication.

Multiplication is associative.

. . .

Multiplication is distributive over addition.

Does the set M satisfy these properties? It seems clear that it does,

but the answer is not quite obvious. Consider the set of all real numbers.

This set is a field because there exists, among other tliings, an additive

inverse fpr each number in this set. Now the jilositive integers are a subset

of the real numbers. Does this subset contain an additive inverse for each

element? 'Since we do not have negative integers in the set under consideration,

the,answer is "No"; therefore, the set of positive integers is not a field.

Clearly, a subset doer not necessarily have the sue properties.as the complete
r

set.

P`kil

10
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To be certain that the set M is a ring, we must systematically make sure

that each criterion is satisfied. For the most part, our proof will be a

reitoOlon of the material in Chapter 1, since the general properties of

matirices will be valid for the subset M of 2 X 2 matrices., The sum of two

2 X. 2 tatriees is a 2 )4:2 matrix; thus, the set is closed under addition.

--TtAeneral proofs of commutativity and associativity are valid. 11e unit

matrix is

the zero matrix is

and the Additive inverse of the matrix

is

When we consider Ole multiplication of 2 X 2 matrices, we must first verify

that the product is an element of this set, namely a 2 X 2 matrix. Recall

that.the nU4?er of rows in the product is equal to the number of rows in the

lefthand factor, and the number of columns is eqUal to the number of columns

in the righthand factor. Thus, the product of Cwo elements of the set M

must be an element'of this set, nathely a 2 X 2 matriX; accordingly, the set

is closed under multiplication. For exampleoL
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1

3 4 -1 1

1 -1] [-_1 111

The general proof of associativity is valid for elements of M, since it is

for.rectangular matrices. Also, both of the distributive laws hold, for
1

elements of M by the same reasoning. For example,

1 2 1 -I

( [3 41 .[0
1 0

[_-11 [0 21

1 0

[1 -1
1 -2

and also

[13 42]

[13 421

( i -11 [01 02])

[ -11

+

[13 42] [-11 [11

. 1 1 131 42

0 1 3

:22]

3

7

and also

.

, /

4 2] [ 1 _I [i. 2] [0 2]

P. 1

[2 2 [11 3. + .

[3 4 -1 1 3 4 1 0 -1 1 4 6] 3 71 ,'

.

.

. Since we have demonstrated that each of the ring postulates is fulfilled,

we have proved that the set M of 2 X 2 matrices is a'ring under addition

and multiplication. We state this result formally as a theorem.

Theorew-t1:1-Ithe set M of 2 X 2 matrices is a ring-under addition

.and.multiplication.

a

Furthermore, we know that the matrix
1 0

0 1
is the identity element

for mdltiplication. Thus the set M is a ring with an identity element.

At this time, we should verify that the commutative law for multiplication

and the cancellation Milw are not valid bylitving counterexamples. For example,

4-
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4

[1 2]

(

[
1 1

1 [-1

-I 1

1]

3 '

. [13 42 -22 ill -22

1

so that the commutative law'for multiplication does not hold. Also,

01

0 .2 0

] [0 [.0

0 0

so.that the cancellation law 'does not hold.

Exercises 2-2
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p.

1. Determine if the set of all integers is a ring under the operations of

addition-and multiplication.

2. Detealan4which of the following sets are rings under addition and

multiplication:

3.

4.

2-3.

ta) the set of numbers of the form a + b vq,

are in6gers;

(b) the set of four fourth roots of unity., nar.aely,

1;

(c) the set ,of numbers a/2, where a is an

Determine if the set of all matrices of the form
[a

forms a ring under addition and multiplication as defined

Determine if the set of all matrices pf thetnorm

forms a ring-under addition anemuliiplication as de-fined

The Uniqueness of the Multiplicative Inverse

where

integer.

0

0 a

a

0

a and b

+1, 1, i and.

with a 6 R,

for matrices.

0
, with a E R,

a
2

for matrices.

Once again we turn our attention to the problem of matrix division.. As we
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have seen, this problem arises when we seek to solve a matrix equation of the

414441.

form

AX = C.

Let us lookiat a parallel equation concerning real numbers,

Each nonzero number a' has a reciprocal 1/a, which is often designated a
1

1. .

and whose defining property is aa = 1. Since multiplication of real numbers

is commutative, it follows that a la = 1. Hence if a is a nonzero number,

then there is a number p, called the multiplicative inverse of a, such that

ab = = ba (b =

st.

Given an equation ax = c, b enables us to find a for x; thus,

axb =

abx = cb,

lx cb,

x cb.
a

Now our question concerning division by matrices canbe put in another way. If

AeM, is therea BeM for which the eqdatIon
Ole

AB,= I = BA .

is satisfied? We shall employ the more suggestive notation A
-1

for, the in

verse, ,so that our question can be restated: Is there an element A
-1

E M for

which the equation

PA = I = A
1
A

is satisfied? Since we shall often be using this defining property, let us
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state it formally as a definition.
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1)finition 2-1. If A e M, *then an element All of M is an inverse of

A provided

AA
-1

= I = A7
1
A.

A If there were an element B corresponding to each element A E M such \

that\

*BA= I = BA,

then we could solve all equations of the form

since we would have

AX C,

7

B(AX) = BC,

(BA)X = BC,

IX = BC,

X = BC,

and clearly this value satisfies the original equation.
1

From the fact that there is a multiplicative inverse for every real number

except zero, we might wrongly infer a parallel conclusion for matrices. As

stated in Chapter 1, not all matrices have inverses. Our knowledge that 0-

has no inverse suggests that.the zero matrix 0 has iv inverse. This is

true, sidce

OX =0

for all X E M, so-thlt there cannot be any X M such that
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OX = 1.

But there is a more fundamental difficulty than this. Let us take the

nonzero matrix

* and try to solve the equation

If we let

then

0 0

AX = 1, for X E M.

X =
r s

[P qAX =
0 01

Here, no matter what entries we take for X, we cannot have

AX = I

since the entry in the lower righthand corner of AX is zero, and tlie entry

in the lower righthand corner of I is 1.

At this,point, you dight be thinking that no matrix has an inverse. Do not

move too fast: Note that 0'

1.1 = 1 = 11.

This means that 1 is its own inverse, just as 1 is its own inverse among the

numbers.

Also, let us note that

7 alb



Thus the matrix

[1/2 0 [2 1
0 1/2 0 2

has the inViae *

Consequently, the equation

[0

A =
2

0] [2 01 0[1
1 0 2

[1/2
0 1/2]

A
1 [1/2

=
0 1/.2.]

[1 2]
X =

3 4

may be solved by multiplying both sides by A-1, thus:

[1/2 0 [2 CI
0 1/2 0 2

0011

a

[1/2 0 [1

4

2]
X =

0 1/2 3 '

[1/2 iiX =
3/2 2 '

[1/2 1
X =

3/2 2]

This is a specific illustration of a general pattern. Let a be any

nonzero number. Now

I = 11

= aa
1

I

=
1

11

73.

(since I = II).

Since the multiplicationitoi real numbers and of matrices is associative and

commutative, it fo11o/4s 6lat for all teal numbers 'a and b, and all 2 X 2:-

matrices X 'and Y, we have
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In particular, then,

Aft

'aNCY = (aX)(bY).

I = Ial.)(4;c1I).

-1 -
Since aa = a 1a, we can also &tate that

I = (a
-II

)(aI).

Alis result enable:tus to enuMerate a large number of matrices and their in-
.

-I -1
verses. Thus, let A = aI; then A = a I. For example, if a = 3 then

o

If a = 0.2, then

Et

A =

[
0 3

and '1-1
1/3 0

0 1/.31)*

)

[0.2 .0 -1 [5
= d 4.

0 0:21
an

0 5

At leasti,w%know that there are a great many matrices A with the property that

there'is a cori.esponding matrix B such that

t
\,\

AB = I = BA. .

* rf
-+........

t

. Before turning to the problem of finding thote matrices that have invdses,

let w'show first that if a matrix has an inverse, it has only.one inverse;

that is, this inverse is unique. For instance, in the example directly above,

we -se that

A
-1

=
[5 0]

if A =
0 5

0.2 0

di 0.2

We wish to show that there is.no other inverse. Suppose that we have elements

A, B, and C' of M such that 82
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'I

_fr

and

AB 1.= I = DA,

AC = I .= CA;

.
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that is, A has an inverse B and. A also has an illverse C. Multiply the
.

k these twouequations on the left by C. Then

C(AB) = CI,
44,-0ke -

(CA)B. C

- since multiplication is associative and I is the Unie matrix. .But now

CA = I. Hence

or

B = C.

Th'is result 4:s sc; tmport.ant that we 411 it a theorem and ?tate it formally: .

)

-Theorem 2- . If A M and, if there exists A
-1

,' A
-1

E M,,,such that

-

AA
-I =IFA A,

\ Ak, -t&I Al is unique; that is, there is:no other solution X of the equations
. .

/ AX = I = XA.

- Now 401can readily show6hA A is- the inverse of- A
-1

41 we Vlow that

A
-1 is the invere of A. This may seem a bit tr01:al, but it is important

r* .

enough to state formally and prgve.

p.

0
\ ,

If.1 - 4 1

L
it

P ,

1 -1
and it A has an idverse A , then A Also

.

. .

.
-,\' .

.

, 1

.

,'5 . .'i.
a,

./

.
$

-. '14.

ffheortn. If 14-c
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has an inverse; n ely, A is the inverse of A
-1

.

.\

Prodf. Since A-
1

is the inverse of A, this means, by definition-that
1111111

A.

-However, the statement of equality can be given in reverse order:

-1 -1
A' A = I = AA .

6
Q -1

This, by definition, is the statement that A is the inverse of A .

E:mrcises 2-3

1.

2.

Show that each of the following

0 0

Which ofthe following pairs'Of

Matrices does not have.an inverse:

1 1 (c) [1 d , (d)

elements of M are inverses of one

0
-3

0
0]

IA

anotheri

(a).

(b)

and

and.

(d)

(e)

[--5 7

0 2

0 1

1 0

. d -b
and

-c a

4
4 'a

.0
c 3. Use the argument in the text .to silow thavince

,

,
..

1 -2 1 1

-3 6 1 1.



neither of the matrices in the producOs invertible (has an inverse).

4. Show that if a
2
+ bc = 0,sthen

and hence that

\I.
has no inverse:

0
r

.5. Show that if A e M, B M, B 0 0, and: AB = 0, 'then A' carinot have

an inverse. Can- B have an inverse?

=0,
I.

bp,

6. Show that if-A-6 M, and A2
-- 4A =91., then either A = 4I or A has

A 4,

no inverse. (Hint: Factor &e lefthand side and note Exercise 5.)
A

7. -Show that if A C M, B e m, GEM, 'and ,AB = I = CA, then B = C.
%

,8. Show by direct cOmputation that

3

9. The matrices

2

S.

0 3

Vill":1 3]
2 5 and

[5 31

2 ar

4,4

are inverses o'f one another. Are their scpiaresbalso inverses? Their

transposes?

10 Since
..-

11

a .

A
2

=

A.

1
= A-A

2
,

A
4
= AA3

S'_

5o

0
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a-1
we can readily demonstrate that A is the inverse of A if A

n
= I.

Using this information, compute the inverse of each of the following

matrices:

44

11. Let

(a.') 0]

0 1 '

4

(b)

[_

91 ,

(c)
[C11 1]

cos 0 sin 0 .

B = sin 0 cos 0

and compute B
2

and B
3

if 0 =1(1200

12. If

vverify that

\\k_

411 1 '

A =

A
2

2A -I- I = 0.
',-

Does the transpose of A also satiitfy'this same equation?

. 13. Prove that if A e M, if p, q, and r are numbers, and if

pA
2
+ qA + = 0

with r 0 0, then A has an inverse. (Hi : Transpose the "constant

term" and fiictor the rqmaining terms. Be careful of what happens if p.

0

or q is 0.) 4

14. Prove, by direct sVstitution, that if .

X
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then

X
2

(p + s)X + (ps qr) I = O.
1^"

Show that _X Mb an inverSe if and only if ps qr 0 O. (Hint: Use

Exercise 13.)

15. Use tb:e result of Exercise 14 to show that if X
2
= 0 then ps qr = 0

and p q = O. (Perhaps you may have to consider several cases in the

proof.)

.2-4. The Inverse of a Matrix of Order 2 v.

At this point, we have proved that the inverse of a 2 X 2 matrix, if it

exists, is unique. Also, we know that there are some matrices that have

inverses and there are some that do not have inverses. But isTe have not yet

developed any general methods of attacking the problem. Certainly our algebra
.,. .

)

will lack power unless general methodi are developed. We are in a situation'

similar to that in which a student finds himself when he has learned to factor

49, quadratic equation and has not yet learned the quadratic foimula. He can find !

the roots of many quadratic equations by trial, but he has no means far solving

all these equations.

It is our purpose now to develop a general method of determining the inverse

of a 2 X 2 matrix when it exists. We shall begin with a matrix whose entries

11P
are specific numbers.and then duplicate our procedure with a.matrix whose /

entries are more general. To start, we shall'consider the matrix

and determine whether there is

A = 5 2

an inverse B such that AB = I = BA. If. we let

qB =
r s

*Er
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then

[3. -1-.1 [1; 1 [1
5 -2 r 0 1] '

or

-r 3q.-s I [1 01
6p -2r 5q -2s 0 1

1

Siinee these two matfiees are equal, the individual entries are equal. Thus we

hai.re. four equations,

3p - 4 = 1, (1)

5p -2r a 0, (2)

3q s (3)

5q - 2s a* 1. (4)

After multiplying Equation (1) by 2, we subtract Equation (2) from Equation

(1) and obtain

p 2.

By substituting this value of p iti either Equation (0 or'Equation (2), we

obtain

r =1.5.

Equations (3) and (4) can be solved similarly, yielding

and s = -3.

Now if we substitute these values for p, q, r, and s, we obtain

.;

2 711
5 -3

To demonstrate that B is the inverse.of A, we must show that AB = I = BA.

This is easy:

2 -1 [3 -
-2
1

5 5
=2

.1 01
0 1

t3
5

jliting the notation for the inverse o, a matrix inttoduced earlier, we may write
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-5 -1 [2

-2]5 -3

In our next step, we shall follow the same pattern as above; burenow we

shall use a general notation for our matrix A. Instead'of having specific real

numbers for entries, we let

A
b]c d

As before, ze represent the inverse, if it exists, as

[rp
qi=

Assumilig AB = I,. we h III

11.0.

be,

---.. ,

i

p q ap + br aq +-bs 0

r s cp + dr cq + ds 0 1

This matrix equation may be written as four equations,

. 4, X
+ br =,1, (5) aq4+.bs = 0, (7)

cp + dr = 0, (6) cq + ds1= 1. (8)

0

$ince we wikh to find values for p, q, r, and s, in terms of the real

numbers a, b, c, and d, we multiply Equation (5) by dir Equation (6) by

and then subtract. We Obthin

or,
v

adb bcp = d,

(ad bc)P = d.

T

Repeating thi§ prodess, using appropriate pairs of,equations, we obtain

0
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(ad be)q = b, . (ad bc)r = c, (ad bc)s = a.

Should it happens that ad be = 0, then it follows from the four equa

tions, above, that a = h.= c = d = 0, so that A = 0.

We have seen in Section 2.3 thht the zero matrix does not have an inverse.

Hedee if ad be = 0 we have a contradiction of the assumptAiwthat the matrix

A has an inverse B. In other words, if A has an inverse, then ad be 0.

Temporarily, let us denote the number ad bc by h. Now if h 0, we may

write

Substituting these valties appropriately

d b

in B, we obtain

a

rid 1 [ d

c a
h h

di

h e a

In Order to show thatthis matrix is the inverse of A, we check:

a

c dj.
t.

-17; .

adbc ab+ab

cded cb+ad
h.

1

We miAst also make sure that BiN.f. 1, thus!

)

BA =

*--bc
a h

d . atac 13c-1-ad

1 01
= I.

[0 1

I 0

0
= I.

1

The fact that the relationship BA = I follows from the relationship AB = I

is qpite signkfical:While:the 40finition of the inverse demands the existence
7

and equarity.of Idhat=areica]?1ed left and.right inver.ses, we have shown that for

re b'f)
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2 X 2 matrices the existence of one implies the'existence of the other and that

if they,exist then they are, in fact, the same. Since t4a multiplication of

matrfces is not generally commutative, we might have expected otherwise.

and

WeVhall state our result formallylas a theorem.

b
Theorem 2-4. If the matrix

[a ,

c dl
has an inverse, then h =.ad bc 0 0

C %41111 7

d

c

b

a
h.

Also, we state the,coriverse of this result concerning

Theorem 2-5. If h = ad bc 0 0, then the matrix

[°11i]

has an

inverse, which is

1

Proof..., Direct multiplication shows that

d b

[: .1:11 c a

h h

s.

410.

Exercisesi-4

d b

h

c a
h

a bl

c d

1.. For each of the following matrices, determine whether the inverse exists;

if it does exist, find it:

A
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(d)
2 a

0-7

(e)

(f)

(g)

[1 7]
9 21

.

2 -6

I
[-1 3

,

, 2. Each of the following matrices is actually a function in the sense that it\
depends on the irdl e assigned to x, vhere x clt. Determine t sLe (values

of x for which he matrix has no-inverse.

(a)

(b)

1

3
x
0

x
1

0

. 3. Show that each matrix of the form,

.4

.(c)

(d)

sin e

cos 0I

.0

has an inverse and find it. Show that the product of two such matrices

(di rterent-Vaief-Of ) lis again such a matrix. (Hint: Use the addition

formulas from trigonometry.)

.1. 4. Show that.if A e M then A h'tts an inve4se if and only if its transpose

has an inverse. If 'A has an inverse show that

transpose (A-
4
) = (transpose A) -1 .

5. Prove Theorem 273 by first computing A by Theorem 2-5 and then using-

Theorem 2-5 dgain to compute the inverse of A
-1

.

6. Under the assumption that the elemlit A of M has an inverse, show how

solve.the equation AX = B, wiih B c M. Apply this to solve the

9 o



as'

^135

1

following equations:

(a) 2x + 3z = 9,

x + 4z = 10;
4

(b) 3x + z = 0;

1;

a

(c) + 3w = 0,

y + 4w = 0;

(d) 3y w 1,

2y + w = 0.

d2-5. The Determinant Funtion
2

We have seen that the criterion for the existence of an inverse for the

matrix

involves the value of the expression ad bc. If ad be # 0, the inverse

. does exist; .if ad be = 0, the inverse doe's not exist. Each 2 X 2 matrix

.0,

deiermines one value for ad be. For.example,

if A =
4[0 1

1 0] then ad be = 1(1) 0(0)

4 6] ;

,

2 :

if A =
'

then ad' be-= 2(6) 3(4),=

if A =
[D..5 3

]
'

then ad bc = 0'.5(0.6) 3(4) 11.7.
4- 0.

4

1

(Note that the second matrix does not have an invek.) With each matrix

there is thus assoeiated.one value, a real number determined by the entries. It

is convenient to give a name to this number, the value of the expression

ad bc, which is associated with the matr4

4.

Definition 2-2. If

X =

9 3

a bi

c d '



. then 5(X) bc is c411ed the determinant of X

Thus 5. assigns to each me ITN of M a rea1,67umber 8(X), read

"delta of1 X:" It is appropriate to regard this assignment or mapping as a

function from the set of 2 X 2 matrices M to the set of rA1 numbers R,

5

me
The function 5 has interesting koperties, some of which we shall

demonstrate.

then

It

then.

First Let us compute the values 5(X) -for a few products:

(a) If

(b) If

A

70.

A =
[3 2]
1 2

and B =

5(A) = 30-). 2(1) = 4,

h

5(B) = 0(1) 3(2) = 6.

AB=
[13

zl t o 31

2 2 1

4 11

4 51

8(AB) = 4(5) 11(4) = 24,

AB

1
0 3

71 2
and B

5(A) = 1(3) 2(0) = 3,

5(B) =. 8(1) 0-(3) =

2 8 0

0 3 3 1

[-1.

9 '

2 2
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b(AB) = 2(3) 2(9) = 24.

76, might suspect that 5(AB) = 5(A) X NB): This is true an we shall now prove

it .

then

Theorem 2-6. If A E M and B E M, then

5(AB) = 6(A) 6(B).

Proof.'e Let 4

'141

'A
=

4r

[ap + br aq+bsl
cp + dr cq + ds "

ft

(AB).= (ap + br)(cq + ds)- + bs)(cp + dr)

= apcq + apds + brcq + brds

aqcp aqdr bsep bsdr,

k

=/ apds + brut aqdr 7 bsep,

5(A) = ad bc,

5(B) = ps

5(A)*6(B) = ( qr)

adqr. bcps b= adps'

By rearranging the terms in expresions (1).ar)d (2), we see that

9

(AB)

1

Let us look at anothy example; .let

"44,..1

(2)

q.e.d.
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Now if .

then

Hence

FUrther,,

.00

A-1

A =
1 2]

[3 2

X =

and B =

[c

a bi
d

1

b [13c ,a

1 .1 d
X

1

_1
and B

0 3

2 1
-r

5(A) = 3(2) 2(1) =,.4,

,O(B) = 0(1). 3(2) = 6, 1 I

1 1 1 3
O(A ) =

-1
o(B ) = (0)

r

41

a

Theorem 2-7.. If A is a 2 X 2 matr% and A has a multiplicative

inverS, then

."

Proof. We have

1
=

5(A)

AA-t
= I,

40

4

91;
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//

5(AA-1)

But by computing 5(1), we See that'

whence

so that

or

8(.1) = 1,

= 1,

1 1
5(A ) = .

89(

,
.

.4

... .

We are nokw in a position where ,i4e can proNte cluile 4 .signiiitant theorem;
4,

t

which.wi11 give u-S.the power to deeide when a product AB has aln in rse 'alid

what thg inverse is
!

Theorem 2-8. I A and B are 2 X.2. matrices'andif A and' t havd
A

inversesIthen AB has an inverge ( )
1

, namelyi. *-

. Proof. Recall thatwë have

Hence,

l'.74-1

I.

5(A) 0,

b(B)X0

=

5(AB) 4 0, .

9.?

01

t.

.!
4
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.which memo that AB has an inverse, by Theorem 2-5.. To complete the proof of

.co4r theor", we need only exhibit a Matrix X such that

Let

6

Then

Itericcic.

4

XAB.

. X =

ABX AB B
1

A

= A(BB )
A74

,

= A(1) A.

mg AA-1

= 1.

is a right inverse. Similarly, 1r show th4.t

B-1 A
-1

I.

ch
.

1.6. us i r1 A -1 is the in erse'of- AB: This completes the procif.
.. .

. .

For example, let

- Then

No0

f

whence

A =
411.

1

2 3i-

AB=

wan

and B
2 5

1 3

anil B-1 =
3

-4 2

2 5 1 3

1 3 7 19

9,5,)



4.

But also,

B
-1 A7i

2

r.t

, 19 3

3] 2 2

71 1

7 "2-'

wP

3 1 19. 3

2 7
_

2

1
. 7

7
3.

7

91

-4

Thus, tor ouv.gxample we have (AB) 1
= 134-

1
A .

1
. ,

. ,

... 10'
.

. ..

There are many other theorems that can, be developed from the concept of a .,.
,

. .

determinant function. A few of thege will be included in the exercises that
..:

follow. It is worth noting, thoug5 we shall not prove,t,'that.there is a

e'

,determinant function associated with the other'sesquare mAtrices., that isi.

with'those of order 3 and that s.impar theorems' hold for them.'

.Exercises.2-5

1. Verify.Theorem for the matrices

3 ,

2 1 ,

(a) A = ,B

.2. Show that

t
2

3

,

L.

5.(tA) t2 5(A)

-Qer-4/ny A e M and any t E R.

Show tnat b(A) is ple constant term in ew polyncvial

.( / 99 ON

A

\
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!

0

A 2i
3 [X2 1.

x
s/

4.

an B

and
1

b(B
-1A3)

and show that they 'are equal .
.

. Show that if A 6 M,, B 6 M, and B is invertible, then

1'
B(B AB)

6. Show that if At is the trarsmpose Of A then

5(A)

cdand conlhe that

for any A e m.

7. The expression, B(A tI) is a polynomial in t. Por each of the fol.-low
,'

ing matriceq A, expand this polynomial an4 find its zeros:

8. Let

(a)
2:

0 4

=11.

2

7

(d)
a 0

b

A
2 01 1
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a,Rd expand the polynomial 5(AA x1). Is this the aame as the polynomial

8,(A
t
A xi)? Are these two polynomials the same for every matrix

. A e

. 2-6. .The Group of Invertible Matrices

In this chapter, we have been restricting our attentim to the set M of
2 X 2 matrices . This set is, itself, a subset of the set cg all rectangular

matrices. Now. this set -.144 can be separated into interesting subsets. ,In the

preceding section, we have 4vided into two complementary, subsets, the ad

2 X 2 maErices that do not haye inverses and the set of ,2 IC 2 matrices

do/have inverses. In this section, we, s'hal.1 confine our attention prl.n pally

tc31 the set of irviertible matrices. It is convenient to demote this t by the
0 symbol M..

Let us summarize certain facts about.the set M of inver ible matrices:i
(a) If A, Mi.' and B e Mi' then AB em

1."

(b) it A M. B e M' and' c em then BC)1/4.. (AB)C..

(e) in M there is an-ictentity element,

(d) if A Mi.' then A has an inverse

. Not only does the set M
i

satisfy each o

riol
to I

and A-1 e m
4.

ese conditions, but there are

many subsets M. that satisfy conditions nalogous to them . Any set S of
3.

matrices ,that satissfies conditions (a), ( , (c), and (d); with S in place of

M will be called a group. The conce t of a group is funidamental and extremely

f

imporcant in mathematics. More geneially, any sen*of elements not

necessarily mktrices, satisfying the foregoing properties relastive to an opera-r

tion (not" necessarily matrix multiplice7ion), is defined to be-a group. You will.
N

note that only one operation is involved in the group properties. Although we

shall later introduce la few examples of the more generaLcb.neept, for the

ttoment let us consider some examples of groups of invertible matrices.
V.
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.The smallest set of.invertible matrices that constitutes a group is the.set

whsse one element is the pnit matrix
1 0

I Since 11 1, condition (a) is
0, 1

satisfied; and condition (b),is autamatically fulfilled by any set of square

. t .

matrices. Certainly r is i member of the set,,so that cOnditt:ian (c) is satis
. . t

e
fied. For condition (d), there, musebe an inverse for evl.ry element; but in oUr

present set, the. ly element 1 1 is its own inverse.

Ail quite simple, isn't. it? Was it obvious?

Another'set that constitutes a group,is the set (1, -1). Again conditions.

(0 end (c) obviously are satisfied. Since

4

and

*4 I) CI) 4m

4.
t

canditipna (a) and.(d) also ate satisfied.

The third set that we.ste!all show td be a group is,a bit more significant.

The,.set of all'el4ents A £44. such that 5(A) .., 1 is a group. The proof is

a.bit more difficult, and' we must check carefully.each one of the defining

properties. To piovide a language that will be helpful, let us'denote, this see

4
4 .

by ) W, thus:

W (A 1 ACM and 45(A) 1) .

Let us 'verify first that conditiOn (a) is satisfied. If A e W and B E

then, 5tA) = 1 and 5(B) i. Since b(AB) 5(A) 5(B* by Theorem 2.-6, we

have

5(T - 5(A) 5(B) = (1)(1) = 1,

de
and thus AB f'w. ,4

4

sr.

(I



Property (b) holds automatically. -

-oat

For property (c), since 5(1) = 1, it is clear that W.

To%demonstrate that condition (d) is satisfied, we must show not only that

each element Of W has an inverse but also that the inverse is.an element of
0

W. Now, if A e W, then B(A) = 1. Since S(A) 0, A )1as..an inverse A-1,

by Theoreur2-5. Since

and

a

we have

AA
1

ma I

St

't Rena. A-1 W, and we have now demonstrated that W i;.a group.

In,our last exampre, we shall diScuss 1 matfices of the.form

x
x

(x,y = real numbers)

and denote.this set by 1, Z C M.

We observe first that the product of any two members of this set Z is aleo'

a member of Z. We have, indeed,

1(1. pc2

-71 c11.1 L-72

x1x2 yiy2 , xly2 + y1x2

.(x
2
y
1
+ x

1
y 2 ) y

1
y
2
+ X

1
x
2

Condition (b) is automatically satisfied;. awl clearly I is a member of

Z, so that condition (c) is satisfied.

55

A
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In considering condition (d), we run into trouble:, The zero matrix is an,

element of this spt, but the zero matrix does nop have an inverse. The set of -*

« ,

al&mitricei of tiw form

does not fo4i a grouP. 'Although the set, 1 does not satisfy the four condiObns,

a subset Z
1

of Z, defined by

Z
1
= (AfAe1 an0 5(A) = 1),

A

does satisfy the conditions and is therefore a group/

The demonstration is easy. Let 'A e ZI and B 6 Z.,. We know that
-

AB E 1, as aj,ready shown; and,-lince B(A) = 1 and 5(B) = 1, we 'know that

«

B(AB) = 1. Hence 0 E Z
1

'land therefore condition (a) is satisfied. Obviously,'

condition (b) also is satisfipd. We know-that' I e Z and thae 5(1) = 1; J.

hence, I E Zi, so that condition (c) is satisfied. Finally, for condition (d),
,A

-1
we must show that if A E then ,there is an inverse A such that A-

1
e Z

1
4,

We follow phe pattern set in an earlier illustratipn. Vince 5(A) =.1,. thete is

an inveise. Then, u4ing the fact lhat B(AA-1) = 8('I), we proceed 'U., show that

a(A-1)'- 1, which means that A71 e Z. , Having demonsbrated that the four

groups.postulates are satisfied, we conclude that-we have a.group..

Before considering the more general.concept of a group, we 41111 demonstrate

a fruitful correspondence between the elements of
1

and the points on a unit

circle, whtch will let us examifie the geometric meaning of Z1.

If

is any element of
1

A

- ^

we have' 5(A)-= 1; that is, we have

04

r



x
2

34. i
2

= 1.

Now, if we let x and y be coordinates of a point (x,y), we are able to

establish a onetoone correspodence between the elements of Zi and the

points on a unit circle:

r
X y

-y X

4

97

-/The set of matrice.a is thus mapped onto the set of points in such a way that tal

each matrix,there corresponds exactly one point of the set, apd to each point of

the set there corresponds exactly one,matrix.
e.

The point (x, y). ia on the circle offradius 1 with center at the origin,

ds shomn in Figure 271.
e

I.

Figure 2-1. The unit circle.

Let us call thist-circle the unit circle and denote it by Q. .

Thus

= (x, Y) I x*C R,
2 2R and x + y

A.

Arometrical meaning can be hssigned to the inverse of any,elem4nt of If.

A
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then we.can readily.campute
1

by Theorem 2-5, to obtain'

4
Recalling the .one-to-one correspondence between the matrices 00 Z and the

1

points, of Q (the dniecircle), .

y X
x (x, 5r)*

we see, by examining Figure 2-2,, that the correspondent of

tion in ehe, x axis of the correspondent osf A.

r

a

is the re'flec-

S.

Figure 2-2. *Ilebmetric representation of inverse matrices A, and A e
1

,

,Although a full discussion of the general notion of a group would bp too

I.

.

extensive for this book, a few words ara in order. The definition of an abstract

group is stated samewhat diffe'rently from the defining propertiek given on page

93, a1tho4 the abstract definition implies the lAtter.

Definition 2-3. A group isa set G of elements,

t.
binary operation o (read "circle") is definedvsuch that the following

a,b,c00#0, on which a

106
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1.

properties are sati&fied:

(a) :If a e G And b e G, then a o b'e G. (Crosu0 propértr.).

(b) If a e G, b e G, and: E G, then

a'o (b o c)'.. (a o b) o c. (Associative prop ty.) .

iika
,

,4

(c) ThereAxists a unique element i,. i 6 G, suq,. t

ioa=amaoi for all 'fie G.

(d)" For each a e G, there exists ai

'such that a
-1

o a im a o a
-1

i.

(Identitr.property:).

elementa,
1

a eG,.

(Inverse iroperty.)

99

If, in addition, the following condition is fulfilled, the groUis is *aid to-be .,.

commutative of abelian
P

(e) For each aeG and each beG,,aobrboi. (Commutative

property.) (

AlthoUgh the operations we are most concerned wiltfr in mathelmatics are

addition and multiplication, We are not _restricted to these in the foregoing.
3

.

10 1. .,

abstract plefinition. For instance, a very helpful exercise, not only for under
.

Alt

/P

,standing the notion of a grou but also for comprehending a finite momber system,

is the addi ion'assoc.iated/4ith a clock face; see Figure 2-3. This furnishes us

with a group. The set of elements is 1,2,...,12. The operation.is clockwise
,

Fiiure 3.',A...tclock face! The additionAksoccated with it gives us a group,

41 .

4
,

addition of tot?ra'. Eacfi defining proyrty of.en.abstract groxp
4
tisatisfiedh as

(

I ,

- ,wa shall now demonstrate. First, the "sum"
,

7f Any two elements is another
(

I 0 r .



100

element. For expOple,we,have
.

.g' * .

4,

0

.

,
.o

Secondly since, for example.

4
7`

:1 + 6 = 7,

+ 4 = 12,,

41l + 2 = 1,
. , -

3 + 12 = s3.

(8 + 2) + 3 = 1 -and 8 4-(2 + 3) = 1

te see that the a#sociative property'hads. Thirdly, a fulrclock rotation,*-an

adiknce of 12 hours, gives the same time, so that 12'is our unique id6titY

v

11!

I.

element; thus,

12 +.2 in' 2 = 2 + 12.

Finally,, to each.of the elements, 1,2,...,12, there corresponds a number we can

"add" to obiain 12., Thus

S

I.

40'
-4

10

12

+ 8

+ 2
,

+ 12

= 12 is

= /2 =

= 12 =

8

2

12

+ 4,

+ 10,

+ 12.
A

A.

One of the most eiegan't examples of'a grotip consists of the-three cube

roots of 1, namely

1, - + 4
2

.

utter multiplication. The'demonstration is left to the studedt as an exetciseo

Interestingly enough, although the integers are the mostycommonly used

system that has a group structure(under.the operation oi addttion), they were

f



4
4

.t

'not* first t o have tbelt 'group' structure analyzed. The first groups to be
J

1,11/46
1 *.

Studiid eXtensively were finite groups such as the'two-texwmples,gp.feWeboVe.
.

P:
t

TheSe'groupseri found,during a study of the theoty of -equations, by Evariste
.

4-

.

. '

Galois,(180.-18321..to,whomds credited the origin of the systematic study of
.

.
- 4 .. ..

GroUIS Theory'. Unfortunafely, Galois was kilipd' in a dul.at the age of 21,

aieer'recèrding soMe of. his 'most notable theoreMs.
.

or:.
%.

.
/

4'
'1--. .

Ex#fcises 2--6 '-

1.' rmine'whether the'Lpllowing sets,are, groupS under4multiplication:

(b) 1,

eSt

where

.

1 ' '7-01] ' 1 O.
0 1

r

K,

K

2. Show that the set of all elements of M of the form

t 0
O t. , where t e R., and t # 0,

constitutes 4 group under multiplication.

3. Sho that the set of all elements of M of the form

s t
0

, 2 2
where t E R, s R, ana t s

constitutes a,group under multiplicatio'n.
L. .

4. If

4

4



4Ar

show thit the set
A

AF,

45

..... ,
0

'is a.group uhder muktiplitgation.. vot 4he.correapondtng points in the
, . :

$

plahe.

5: Let

T

*4

Showthat the set

.1 2.
arid* g.1 1 1 0

,..

S.

A

. (TIt71,.T (-1)T , TcT )
, .

is algroup under *multiplication.. Is this trd$ if T is any invertible

matrix?

6. Show that the set of all e _pf.the,form
'

1.

with a e R, b E R, 4nd ab gE

A

i a group under multiplication. If you plot all 9f the points (a,b),

w.ith and b as abstve, what sort.of a curve do you get?

Let,

K =

and let H be the set of all matrices of the form

xI + yK, with X E R. and y E R.

Prove the following:

4.

(a) The product of two elements of H is also an element of H.,

(b) The element xI + yK is invertible if and only if



..

/ 103.

p p

44,

0. ft

-

L

y2
%.

1

(c) The set of all ements xI ,x
2

y .1 is a group.-
/

.

fit -If a set G of 2 2 *atrices is a group, how.that each of the following

sets are groups:

: t
(a) (A

t
1 AI6 G) where A, transpose of .A;

.6

(b)* :AB' 1 A e Op Where' B is a 'fixed invertOile element of M.
, .

9. If a set G;'of 2 X 2 matrices is a group, show that

(a) G (A i A 6 G),

G 1BA-1 A e G41, where B is "any fixed element of G.

,

10. Using the definition of an abstract group, demonstrate whether or not each.

of the following sets under the indicated operation is a group':,

(a) the set of odd integers under additioll;

(b) the set of positive real numbers under matiplication;

(c) the set of the four foUrth roots,of 1, (1, 1, i, under

multiplication; "*.

4.

,(d) the set of all integers of the form 3m, where m is an integer,

under addition.

11. By proper application of the four defining postulates of an abstract group,

prove that if a, b, and c are 'elements in.a group and aohmiaoc,

then b c

4

2-7. An Isomorphism between Complex Numbers and Matrices

It is true that very many different kinds of algebraic systems can be

expressed in terms of special collections of matrices. Many theorems of this

nature have been proved in moderh higher algely.a. Without attempting any sucti

proof, we shall aim ih the present section to demonstrate how the system of

2
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complex numbers cen be expressed in terms of ma.t./tices.,
4 '

I/

/In the preceding section, several subse of the set of all 2 X 2 matrices

were displayed. In particular, the set of ell:matrices of the form

X.....

X y
X E R qind .y e R,

/

boa.

. vies conbidered. We shall exhi a onetoone correspondencebetween the set

,,

ft

of ,pll complex tiumbers whic we denote by C, and the set Z. 1This onetoane

-forresp

Ig

ence would pot be.particularly significant'if it did not preserve

prop-Ades that is, kf the- sum oi' two complex numbers did not

/
9c,respond to the sum

/
of the corresPonding,two matries and the product of two

#,

,

9omplex numbers did not correspond to the product of the corresponding two

matrices. There are othe; algebraic properties that are preserved i, this

sense.

Usually a complex number is e N ressed in the form

,-

x + yi,

' where x e R, and y e R. Thus, if c is an element of C, the

!
set of all complex numbers, we may write

c = x(1) + y(i).
0 A A

40

The numeral I is introduced in order to make the correspondence more apparent.

In order to exhibit an element of" Z in similar 4orm, we must introduce the

special matrix

Note that

14 ^
0 1

1 0 A'

4
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at

thus

. a

a

p
1 oi

o o ij
o

The matrix J. corresponds to 'the number i
?

equation

This enables us to verify that

"

.

'vhich 'satisfies the ahalogous
1

2
i 1.

x1 + yJ x + y

0

]0 y

1

which indicates that any element of Z may be written in the form

For example, we have.

21. + 3J 2

xI + yJ.

1 0

0 1

2 0

0 2

[-2 3

3 2
r

+ 3 -1. 0

0 3

-3 0

a

4

t



and

0,I + 5.111, 0 .

0 .1
+ 5

1./
,

...
..,.

0 0

0, 0

o
10 .5[ .

I.

r

WI can,estabLish a correspondence between C, the set of,complex numbers+,

d 2 . the set of matrices:.

4
2C1. + yJ.

Since each element of C is Matched with one element of Z, and each element

of Z is matched with one element of 'C, we call the correspondenceone-ta-one.

Several special correspondences are notable:

,e02'

0 =2.0.1 = 0+ 0-I + 0-3
,

1 = 1-1 0.i 03 I+ +
e

0 .1 0+

As stated earlier, it is interesting that there is a correspondence

,between the complex numbers'and 2 X 2 matrices, but the correspondence is not

particularlY significant unless the one-to-one matching is preserved in the

4erations, espeCially in addition'and mu14p1ication, We shall now. follow the

6orrespondence in these Operations and demonstrate thst the one-to-one property

is preserved under the operations.

When two camplex numbers are added, the real camponents are added, and the

imaginary components are added. Also, remember that the multiplication of a

matrix by a number is distributive; thus, for a e R, b 6 R, and A E M, we

have

,(a+b)A = aA + bA./

11



4

l
,(ence we are ahli to Show our one7toone correspondence under ddditicin:

A

2

107

' vo

Z
1

+ Z
2

. . ...

+ -(x2 .1- iy2)
(xlI,+ y1J) + (x2I 4- y2J)

. ,

. . .

. .

+ x2) + (Yi 4. y2)i. <"---> (xl.'+ x2Y1 + (Y1 -1-Y2)j-'

f-

For examp/e, we have
;

or" 0

.(2 31) + (4 + 11), (!21 3J) + (41 + 1j)

'and

A

-

5'

21 47-> 7 2g

43 7 2i) 4- (2 -17, 01) (31 2J) + (21 + 0.5)

= 5 2i 51-- 2J.

=1

Before demonstrating that the correspondence is preserved under multiplies
,

tion, let us review for a moment, AVexample will suffice:

(2 + 41) (3 21) = 6 41 + 121 81.2

= 6 8(-1) +c(-4 + 12)1

= 14 +81;

(21 + 4J)(31 2J)= 61
2

4IJ + 12.11 8J
2 .

= 61 4J + 12J 8(I)

= 61 + 81 + (-4 + 12)J

= 141 + 8J.

Qenerally,'for multiplication, ye have

= (x Yii) (x2 Y20 (x
1
I + 9'1 3). x

2
I + y

'2J)
=
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m
xl3c2.-+ yly2i

2

:I- x1y21. +.5r1x
. .

, ' .'*'''
(x1x2 --.y1y2) +. (xlyz 4. x2y )i

.

x1x2 ylypI + (x1+ x,y.%1)-.
f.': 4

..

2 2

2C1x2S Y1Y2j t x1Y4Pi

4

4, -1
.If we replesint a complem number

,

; a44 bi

2 .

as a matrix,

a + bi
a b

b/ a

we do have a significant correspondencet' Not only is there a onetoone cor
,

respondence between the elebents of.the two sets, but also the correspondence

is onetoone under the opetiOns of addition and multiplicatiln.
,

and

The Ad4itive and multlylicative identity elements are, respectively,

0 ... 0 + Oi
A

1 + Oi < >

and for the additive inverse of

we have

a bi

0 0
0 0

0 l

^
a b

b a

a b
b a

= 0
a

\

'Let us now examine how the multiplicative inverses, or reciprocals, can be

matched. We have seen that any member of the set of 2 X 2 matrices lhas a

s

multiplicative inverse if and only if the detetmihant does not equal zero. That

is, if A c Z then there exists A-1 if and only if* x2 + y2 0 0 since



. /

109

.
.

- 1

NAr= x2
4- y

2
if A = xI + yJ. ow we know that any complet numbet has i

Oultiplicative inverse, or reciprocal, if and only if the complex numbir is no6 0

zero. That is, if c = x yi, then there exists a multiplicative inviae if

and only if x 0 0,t, which means that x and y are not both O. This is

2 t 2
equivalent to saying that x + y )4 0; since x R and ,y R. For multipli

.

.cative inverses, if,

- I

our correspondence yields

c
1

= x 4- yi

11
cl

x2 + y2. .0,

<---> x1 + yJ Z1,

1 1

2

1
(x yi)

2
(xI y..T) = Z

1
x + y x. + y2

It is now clear that the'coreSpondence ben:teen .C, the set bf canplex

numbers,.and Z, a subset of all 2 X 2 matrices,

x + yi xI + yJ,

is preserved under the algebraic operations. All of this may be summed up by

. saying that C and Z have identical algebraic structures: Another way of

expressiAg this is to say that C _and Z are isomorphic. This word is derived

from two Greek words and means "of the same form." Two number systems are

isomorphic if, first, there is a mapping of one onto the other that is a oneto

one correspondence ana,

two number systems are

secondly, the mapping preserves sums And products. If

isomorphic, their structures are the same; it is only

their terminology that is different. The world is heavy with examples of iso

morphisms, some of them trivial and some quite.the opposite. One of the simplest .

is the isoirckhism between the natural numbers and the positive integers, a
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13.0S.

ubset of the infegers;.another is that betWen the realinunbers and the subset

a + Oilk'of all complex numbers. (We should quickly

8

isomoryhisM between real numbers

aI + 0.3t)

AA example of an Isomorphism that 'is more difficult to Understand is that .

a and the set of

guess that there is an

all matAces Of the foim

betweenlreal numbers and residue classes of pblynomials. We won't try t.o 'explain

tlita One; but there is one more fUndamental concept.that can be'in intrqd4ced
*.

here, as follows.

We have stated that the real numbers are isomorphic to a subset of the com

plex numbera. We speak of the algebra of the real numbens as being embedded in

the algebra of complex numbers. In this sense, we can say that.the algebra of

complex mumbers is embeddedIn the algebra of 2 Xa2 matrices. Also, we can

speak of the complex numbers as being "richer" than the real nuagbers, or of the

2 X 2 laatrices as being richer than the complex numbers. The existence of

complex numbers gives us solutions to equations such as

x = 0,

which have no solution in the domain of real numbers. It is of course .clear

that Z 4s a proper sUbset of M, that is, Z C M and 2 0 M. Here is a simple

example to illustrate the statement that M isiricher" than 2: The equation' .

has for solution any matrix

X

I.

X
2

I = 0

1/t 0

0 1
, tERand t00,.

4.

as may be seen quickly by easy computation. On the other hand, the equation

x
2
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A

4

has exactly two soluticnicamong the 6omplex numbers, namely c 1 and c,

-% gxercises

.1. Using the following values', show the correspondence under addition and

MO ,O
mu1tip1ication.between complex nuMbers of the form x.+.yi and matricea'

of. the form xI + Ya:
. 4 .

.. . 1 .
A .

(a) xi. 1, y1 .ft. - 1, x2 , 0, and yi =, -.2;

t%

(b) 3, y1:=;-.4, x2 =1,, and y2.118 1;

xl O' y). 7 r 5' f2 3' and Y2 "

2. Carry through, in parallel columns as in the text, the necessary computa-

tions to establish an isomorphism between R and the :jet

{{.x, 0] xcit}
0, x

by4neans of die correspOndence

:X [10C 01 . I.

3. In the preceding exercise, an isomorphimn between R and the seta of

matrices

( [
x

x
, x R,

was.considerea. Define aafunction

by

f : R --> M

x
f(x) [0 0

J19



.
Determine which of the following statements are,qorrecl,t:

6

a,f(2?+f(y),

(f(x))-1, x 0 O.

4. Is the set of matrices

.2 2

le

t.

with a and b rational and with a + b =1. 11a group under multiplication?$.

2-8. Algebras

The concepts of group, ring, and field are of frequent occurrence in modern

tilo algebra. The study of these systems is a study of the structures or patterns

that are the framework on which algebraic operations are dependent. In this

chapter, we have attempted to demonstrate.how these same concepts describe the

structure of the set of 2 X 2 matrices, which is a subsetlof the set of all

rectangular matrices.

Not only have we introduced these embracing concepts, but we have exhibited

the "algebra" of the sets. "Algebra" is a generic word that is

in a loose sense. .Dy technical definition, an alObra is a sy'S

binary'operations, called "addition" and "multiplication," and

"multiplication by a number," that make it botha ring and a ve
t

Vector spaces will be discussed in Chapter 4 and we shall

set of 2 X 2 matrices constitutes a vector.space under-matrix

multiplication by a number. Thus the 2 X 2 matrices form an algebra.

freqpently used

tem that has two

also has

ctor space.

see ehen that the

e
addition and

As you yourself might conclude at this time, this algebra is onLy one of

NL

2.i)
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posstge 4gebraer'Someqf

'0

.

.
these algebras-arevdtV.icates of one anottier.

76
( %.:-/--- : g

til the sense that tIN %basic s tructure ,of one is \the same as the basic s tructure

of another):' Superficizik, they -seem di-fferent because of.the te-rminology. When.

they=bave the smne structure, two algebras are call 'isomorphic. One of the
. ..

..."

reitinvobservationg aboutmodefhli miatiematics is pat 'the,
, %. \.....A.

VI r
new branches often overlaps paxts qf the old mathematics with

°It t',1'
. \ *

already fami L ar.

1

4

f

u.00"

INK

/

structure _oil these

*Which we are

V

VA,
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chapter 3.
6

i i r
, MATRICES AND SYSTF.:MS OF LINEAR EQUATIONS ,

,

3-1. Introduction
' -

In this Ompter, we ere going:to demonstrate phe use of mataiif in the

solution of syktems of linear equations. We shallfirst reyiew,a few cit'll-known
.A

'algebraic t'e'cfiniques for solving these systms and then shall show how some of

,

the ssme/t6chniques can be duplicited in terms.0 th matrix operations with'

. which you are- now famiBrar.

Our study will tlips lead us naturally into the application of matrices to

the solution of systems of linear equationa.: ^,11
, 4
-

In your previous study of algebra, you probably learned,pevera.1 methods

for seeking solutions ,of such systems of linear equations as

2; - y 3,

(1)
-5x + 3y - 7.

Thus, you might recall the method of substitution and the method.of elimination.

For example, you can solve the first of the above equations (1) for y in*

terms- of x,

y = 2x - 3,

substitute this expression in the second equation, obtaining

whence

and accordkhgly

-5x -1- 3(2x 3) = 7,

IL

115

( )
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.""ffllea.

y = 2x 3 = 2(2) 3 = 1. 0

or you can multiply both members of the first equation in (1) by 3.to obtain

6x 3y = 9,

1

add thi's to the second equation in (1) to eliminate y, getting ;

. whence

x= 2,

y 1

as before:

In each-of the foregoing pratedures., what has actually been demonstrated is

(2) .

only that if there is a solution set of values' (x,y) bar the system. (1), then

(x,y) = (2,1). For logical completenestA you should subsatute these values in

the'origina1 equations (1) and observe that for them the equations are valid

$ tatements:

2(2), 1 3, 5(2) I- 3.Q1.7 7.

.Alternatively, of course, for logicalsampleteness you might demonstrate

that each of the stcps you have taken is "reversible'!--that is, that the validity

of-each new system of equationsimplies that of the former system--so

the system of equations,

=x.2 1

at finally,

with'which you ended is equivalent to the original system; that is, every solution

of one system is a solution 4 the other, and con:nrsely.

For example, the system



2x y = 3,

x 2,

.117

(3)

which consists of Equation (2) and the first equation in.(1), was ob.tained by

means of algebraic operations from the system (1). Accordingly, any solution of

the system (1) is also.a solution of the system (3). Conversely, the validity

oi the system (3) implies that of the original system (1), since the first
/

equation in (1) is included also in (3), and sinCe the second equation in (1)

results from subtracting 3 times the first equatibh in (3) from the second

equation in (3). Accordingly, the two systemsgire equivalent.

Direct verification by the substitution of. x 2 and y .1 in the '

original equitions (1) has the advantage, however, that it guards against can

putational errors.

In the present chapter, we shall investigate two routine and orderly methods

of elimination, without regard to the particular,values of the coefficients

except that we shill aVbid division by 0. The first of these, the triangaation

method, is an extre efficient general way of solving a single-system of

equations. The diagolial method, which is treated next, Is an extension of the

triangulation method.' It I's rajAher less efficient than the triangulation method

,

in solving a single system; but it is especially useful in dealing with several W

systems in which corresponding coefficients of the viriables are equal while the

righthand members are differentra situation that often occurs in in4ustrial, and

applied scientific probleins.

//The triangulation method and the diagonal methpd are procedures Ol the sort

you might use, for example, in "programming," i.e., devising a method, or program,

for solving a system of linear equations .by means of A modern Tlectronic computing

macIline.4 Before long, these "magic brains" may be developed to the point where

they are able even to choose for themselves the most efficient method for dealing
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with any particular set of coefficients.

The methods will lead you naturally to see how the tlieory of matrices that

you have been studylmg is directly applicable totthe solution of thelse systems.

N7 Ar

Ii particulario you will see how the diagonal methpd can be used in Matrix'in-
4

version and how very useful the inverse of a matrix is in the solution of
"it

systems of linear equations.

Exercises 3-1

1. Solve the following systems of equations:

(a) 325 + 4y = 4, (b) x 2y = 3,

5x + 7y = 1; y ='2;

(c) x + y is 3, IN) x 3y + 2z = 6,

2y + z = 10, y z = 4,

5x y 2z 3;' z i;

(e) x + 2y + z 3w = 2, (f) lx + Oy-+ Oz + Ow = a,

y 2z + w 7,

24 = 0,

w = 3;

2, Solve by drawing graphs:

(a) x + 2,

x y = 2;

1.

Ox + ly + Oz + Ow = b,

Ox + Oy + lz + Ow = t,

Ox + Oy + Oz + lw = d.

(b) 3x + 4y = 1,

5x + 7y = 1.

3. Which of the following statements is correct? Which of the final conclusions

is actually valid? If

la

then

4
2

2-4-5 + 5 = 5
2 25.4 +

z

(4 5)2 .= (5

12,5



so that

iihence

4 5 = 5 4,

- 1 = 1.

If

then

1 = 1

C.

so that*

whence

(4 - 5)2 = (5 4),

4
2
- 2.45 + 5

2
= 5

2
- 2-5.4 + 4

2
.

3-2 The Triangulation Method'
t.

The triangulation method feor solving systems of linear equations is best

presented by example. lUe method' consists of a ster.--by-step replacement of a

given system by a sequence of simpler bui equiva1ent'systems.

Consider, for example, the system

119

/ !

3x + 2y 2z = 3,

2x ,y 4z = 4, (I)

x + y + 5z = O.

The basic objective of the triangulation method is to replace such a system

as (I) by -an equivalent system of the form

x + 1)1 y + cl

y + c
2

z=d
1'

z d
2'
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if this is possible. The value for z' is then substituted from t e third

equaiion into the second to determine a value for y, and then bo h of these

values are substituted into the first equation to determine a valu for x.

For a systeM such as (1), the procedure in achieving the basi objective--

if it can be carried out--is tirst to Otain the desired coefficie ts 1, 0, 0 for .

x, next the desired coefficients 1, 0 for y, and then the'coeffi lent 1 foro

z. Thus tbis procedure might be.saidsto consist of 3 "molecules,"

"atoms,".r spectively.

For the solution of the system (41), the first molecule has 3 a

first equation in.(I) is multiplied by '1/3 to.yield.

X
2

y
2

. 1; (1),

f '3, 2, and 1

ms: ( ) the

(ii) 2/3 dames the first equation is added to the second equation in (1) to get

7 8
; -3- y -5 z 2; (2)

and (iii) 1/3 times the first equation is added to the third equation i (I) to

let .44?
.obtain

5 13+ 1. (3)

A
1

Now Equations (1), (2), and,(3) constitute the system

2 2
- -5.y'=- -5-z= 1,

'7

3
y z 2,

3

5 13

Y

Thus, any solution'of the system (I) is also a solution of the system (II).
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On the other hand, by reversing the atomic Process, you can show for yourself

4t; that is, any solution of the system (II)that the .reverse implication also hal

. ,

is also a solution of the syatek (I). AccordinglzA the two systems are equiva-

lent: Every solution of one of the systems is a solution of the other, and vice

versa.

The second molecule has two atams. Namely, (i) the second equation in (II)

'is multiplied by 3/7 to obtain

and (ii) 5/7 times the secon

yield

8 67 Z 7 ;

equation is added to the third equation in (II) to

17 17

T- -77-

We now hive the equivalent system

z= 1

17 17
z .

The third molecule has just one atom: we multiply'the third equation of the

present system by 7/17 and thus obtain,the equivalent system

2 2
= 1,

8
+ 7 2 = (IV)
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We have now'completed What is known as the forward solution of the system

(4.. For the backward solution, weNaub.ttitute z = 1 into the second equation

in (IV), getting

and then substitute z is 1 dnd y

ing

1M 2 jfl:sthe equation, finally obtain-

sl 3.

1,11 the backward solution, the systems.we have obtlintriare still,equivalent

to the original systen. Thus, if we have made no computational,mistakes, we

have determined that the system (I) has the unique solution

(x, Y, ') mg (3, 2, 1).

To make the steps of the triangulation method quite clear, let us detach the
4

coifficients of x, y, and z in the system (I), thus:

3 2 2 3

2 4 4
A

1 1 5 0

The symbols x, y, z have been placed in a-row at the top of the columns

to serve as a memory device; in the next section, when we shall be working with

matrices, they will appear as a column on the right.
ir

1

In the foregoing process, what we sought,was an equivalent system containing

coefficients 0 and 1 as follows:
4
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OG

x y z

b
1

el

ol c
2

lit

d
1

d
2

d
3
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What would we have sought if the system had consisted of 2 equations in 2

variables? of 4 equations in 4 variables? Can you suggest why this might be
4.

called the "triangulation" method?

In terms of detadhed coefficients, the steps in ihe foregoingforward

triangulation solution of the system (1) went like this:

-

x y z
11,

3 2-2 n 3

2 I 4 4

1 1 5 - 0

..

1
2 2

7 8_ _
3 3
5 13

3

VS.

1

2

1

1

6

7

17

7

IS
2 2

1

8 6
0 1 '7 7

0 0 1 1

(4)
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Generally, for the system

all x + a12 y + a13 z = d

a
21

x + a
22

y + a
23

z = d
2,

a
31
x+a

32
y+a

33
z= d

3,.

V.

the triangulation method proceeds like this if none of the coefficients we want

to divide by are 0: a

4 X

a
11

a
12

a
13

eI
a
21

a
22

a
23

Et e
2

a
31

a
32

533
.

e
3

a.

.4?

X

1 b
12

b
13

0 b
22

b
2
j

0 b b
32- 33

y Z

x 7 z

1 b
12

b
13

0 1
c23

0 0 1

Int

sre

g2

II

3

(5)

Can you express each of the b's in terms of the a's? each of the c's

in terms of the h's? What are similar expressions for the f's, g's, and

.h
3
?

Mk,

a
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Exercises 3-2

Now
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1. In general,.in the triangulation method for solving a system of four linear

equations in four variables, how many "molecules" are there in the forward

solution? How many "atoMs" in each of the "molecules?" How many individual

additions and multiplications in the forward and backward solutiOns togetherz?

2.' Solve the following systems of linear equations by the triangulation method:

(a) 3x = 4;

(c) 2x - y + z = - 1,

3x 4.-2y + 3z = 3,

x + y + z = 2;

(b) = 3,

x + =

(d) x + y z + w 9,

x y z + w - .1,

x - y 4-.{z w - 3,

4

3. The solution s .of one of the following sbs of linear equations is

empty, while the o her solution set contains a infinite number of,:solutions.
.

See if you obndete ine by the.triangula n method which i ch, and

gnre three pa;Xicular numerical soiuticins for the system that does have

solutions:

1*

(a) x + 2y z = 3,

x y + z = 4,

4x - y + 2z = 14;

(b) x + 2y z 3,

x - + z ix 4,
4x y 4- 2z ir 15.

4. For the scheme (5) of this section, express the Vs in term of the a's,

the c's in terms of the b's, the f's in terms of the a's and e's,

the gis in terms 6f the f's and b's and h
3

in terms of the ats

and e's.

3-3. Formulation in Termslof Matrices

In thi::-Iction and the next, we shall see how the matrix notation and

operations that were developed in Chapter J. can be used to write a system of

(4c2



.126

linear equations in matrix form and to carry out the steps of the triangulation

method for solving the system.

First, for the system (I) of Section 3-2, namely,

3x I- 2y 2z = 3,

2x - y - 4z = 4,

I

/ -% t. iy + .5z = 0,

let us consider the array o detached coefficients of

matrix,

3 2 -.2

2 -1 -4
-1. 1 5

Next, let us cpnbider the column matrices, or column vectbrs,

X

-9

y and

tml

B ##

3

4
0

4m.

and z as a

whose entries aiw Eiccur it that system of equations,. By the definition of

2
matrix multiplica on, wwhave

3 2 -2 3x,+ 2y - 2z

AX 2 -1 -4 2x - y - 4z
-1 1 5 -x y + 5x

(I)

which is a column matrix whose entries-art the left-hand members of the equations

our linear system (1).

=Now the equation

AX = B, I (1)

that is,

133

4
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is .equivalent,-1?y the definition of the equality of matrices, to the entire

system of linear equati)pns KI). It is an achievement not to be taken modestly

that we are able to consider, and work with a large systii'cif equations in terns

of such a simple representation as is exhibited in .§quation (1). A pattern is

beginnin§ to emerge, but we shall 'not now spoil the fun by announcing the final

1*

results.

There As an interesting way of viewing the product A

Ax

An.

2 -2
-4

-'1

A
r-

3x + 2y - 2z
2x y 4z
-x + y + 5z

#. Y.

You will7recall that the equationsrou have been handling earlier,' such as

and

y ax + b

y x, L

express functions, or mappings, with numbers x constituting the4domain

numbers y constituting the range. The above matrill A can also be con idered

as determining a function, with the variable X on i domain of column matr es,

and with the variable

3x + 2y - 2z

4-x

+ y + 5z

also.on a range of column matrices: a matrix function of a matrix variable: We

have ndt previously considered functions of tills sort.

In terms of matrix functions, what is the meaning of Equation (1)? The

1 34
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matrix function determined by the matrix A paps the X domain of matrices onto

a y range of matrices. Equation (1) salts an inverse question: What matrix or

matrices X (if any) are mapped on the particular matrix B? Of-course, we have

already found in Section 3-2 that the unique valid answer to this question is

X ='

We shall consider some geometric aspects of this matrix-function point of

-
view, in Chapters 4 and 5.

.
Now fook again at the scheme (4) in Section 3-2, but this time in terms of

'matrices:

3 2 -2 3

12-

2 -1 -4 4

-1 1 5

-

5 13
0 -5 -3-

2

-5

7

17
0

7

2

-5

1.

0

y] =

1

6

1

We already know from ehe work of Section 3.-z that these matrix equations are

equivalent, so that the implication arrows

arrows

r,

can be replaced by two-headed

Our present concern, however,lis the question: Can the foregoing imp1ica-2

tion?; be achieved through matrix operations? This question will be treated in

1 3



the next section.

Exercises q-,3

1. Perform the indicated multplications:
4

re.

4 2 P 3 Z 2 x u

(a) 3 1 5 (b) 2 1 4 y .v

0 6-1 1 1 5 z w

rio

2. ,Write in matrix form:

(a) 4x-- 2y + 7z at 2,

3x + y 1,

cty = 3;

(b) x + y = 2,

x y 2.

C).

129

3. Determine the systems of algebraic equations to which the matrix equations,

rir r .1r

3 4 5 1 3 2 2 x. 1 2

(a) 1 2 3 0 (b) 2 1 4 y- v 2 3

0 1 2 2 1 1 5 w 3 1

..

. . are equivalent.

4. Onto what vector does the function defined by f"

[13 12 x41

3

[3]
5. Perform the following matrix multiplicat os:

map the vector ? What vector does it

nmap

onto the vector
2

(a)

1

(b) 0
0

a b

d e f

g it i

'a
d

b
e

c

g

.

13f;
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1 0 0 a b c

(c) 3 1 0 d e f

D 0 1 g i

l b e

(d) 1 0 0

.a

d e f

0 0 1 g h

SolUtion b3; Means of Matrices
--

In applying the triangulation method to.the solution of the system (1) of

Section 3.-2, namel

3X + 2y 2z 1.

. 2x -- y 4z in. 4, (I)

x + y + 5z m 0,

we carried out just two types of algebrais.operations in obtaining an equivalent4-

systau in triaAgular form:

.1.

(a) multiply an equation by a number other than 0;

(b) add an equation to another equation.

A third typeof operation is sometimes required, namely:

(c) interchange two equations.

This third iveration would have been necessary if a coefficient by which we

otherwise would .have divided had happened to be 0, and there had been a sub

sequent equation in which the same variabr had a nonzero coefficient.

The three foregoing operations can, in effect, be carried out-through

matrix multiplicaion. We shall illustrate this stttement through examples

involving a given 3 X 3 matrix of coefficients of te variables .x, y, and

z, namely,

(C

ft A
a b c

d e f

g h

_13 / 1).

a.
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You can easily see, 'however, that,the comnients that follow hold more generally

for an arbitrary rectangular matrix.of coefficients.

- (a') Consider the product

n 0 06.10001
i_

a
d
g

_

b

e

h

e

f

i

l
na ..nb

d e

g h
,, -.

.11.

nc
f

i.

a.

You should perform this multiplication yourself to see that the result is correct.

The operatMn has ch effect of mult*lying the first row of A by n. To
.

, -

multiply the second or t ird row by' n, you can verify'that yop woUld multiply

on the left by

1 0 0

0 n 0
Sm.

0 0 1

or

ea.&

1 .0 00-11

0 0

0. 0 n ,

4

1 respectively. Thus, to multiply the pth row of a matrix_ A by n, you

.1

multiply A on the left by a matrix J obtained from the identity matrix I

through multiplying the pth row of I by n.

(b') Consider the product

3. 0 0 b c a b c

0 1 1 d f 11111 d+g e+h f

0 0 1 g h g . h

this multiplidation has the,.effect of adding the third row of A to the second

row of A. To add ihe third row to the feit, for example, or the first to the

second, you would multiply on thgL.keft by

^
1 0 1 1 0 0

0 1 0 or 1 1 0

0 0 1 0 0 ,1

respectively. Thus,.to add the pth row of A to the qth row of A, you
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multiply A on the left by a matrix K obtained from the identity matrix 1

by adding the'p-:th row of I to the q-th row'of I.

,fc') Consider the products

0.
0 1

1 0

0 0
AMEN,

1 0

0 0

0
are

0

1

0

0 1

1 0

0

0

1

0

1

p

1

0

0

,

,
a b c d e f

d e f a b c

g h i g h

a b c a V c

d e f xx g h
g h i. d e f

b c- g h
d e f d e fi
g h a b c

4 6.-

Thus you see that to interchange the p-th and q-th rows of afmatrix A, you

multiply A on tte left by a matrix L obtailed from tte identity matrix 1

by interchanging the p-th and q-th rows of I.

Definition 3-1. The matrix multipliers .1, K, and L described in pare-
*.

graphs (a'), (b'),,and (c4), above, are called the elementary matrtces.

The foregoing rql'es fey determining elementary matrices 3, K, and L, to

be used imoperating on the rows of a matrix A through matrix multiplication,

s

are extremely easy t6 You simply perform the desired operation on

instead of A. You might note, however, that these operations on I are not

operations defined in our algebra of matrice% they are merely devices for COD-

structing the left-hand multiplier J, K, or L.

Each elementary matrix....a-,..(that is, each J, K or L) has 4ti inverse,

that is, a matrix E
-1

such that

E
-4 1

For example, the inverses of the efementary matrices

1 39



1 0 0

0 n '0
0 0 1

are the elementary matrices,
I.

1 0 0

1 0 0

K 0 1 1 , and L
0 0 1

0 o IC1
o
o

0

0 0 1
ANN.

133

1 o
o o

0 1

respectively, as you can verify either by performing the multiplications that

are involved or by recalling the effect of multiplying any matrix A by one

of these elementary matrices. Thus, the above matrix I. differs from the

%identity matrix I in having its first two rows interchanged; and multiplying

on the left by Li has the effect of interchanging the first two rows.

1411tiplifations by elementary matrices can 'be combined. Thus, to multiply
a.

the first row of A by 1/3, we would multiply on the left by the elementary

matrix J with a
11

1/34:

and to add -2/3 ttmes the first row ta thesond row, or 1/3 4mes the first

row to the third, we would multiply A on the left by the product of elementary

-1
matrices of type J K J:

-1

723- 0 0

010
001

1110.
001

0
3
2

0

0

0

#.1

0

0

0

1

1

2---
3
0

0

.
1

0

0

0

1

or
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1

O

1

0

L

0

0

O

1

- 0
3
0 1

0 0

0

0

3.

_

1 0 0

- 0 1 0
13 o 1

respectively., To perform all three of these operatidns at the same alga, we

would multiply A on the left by

which can similarly be shown to be a product of elementary matrices.

Now the three operations performed on the matrix A through multiplying A'

on 'the left by.the above matrix 141 correspond precisely to the three atoms

(i), (ii) and (iii) of the first molecule in the triangulation solution of ths'

system (1); see page 120.

In matrix form, the system (I) is

3 2 -2
2 1, -4

-1 1 5

MN/

3

41 .
0

We multiply both sides of this equation on the left by Ni, thus:

I

3

2

3

1

3 2

2 -I -4

-4 1 5

4 (1)

If you will carry out the numerical computations both in the left-hand member 4

and in the right-hand member of Equation (1), you will obtain the anticipated

result:
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,e 7
v 3 7 3

5 13

3 3
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This is the matrix form of the,system (II) of Section 3-2.

you look now in Section 3-2 it the two atoms (9 and (ii) of the second

molecule in the solution of the system (1), you will ascertain that.the corres

ponding\matrix,multiplier must be

0 3
0 77- 1

0

5

7
411k

since this time we want to. multiply the second row of the matrix of coefficients.

by A/7 and to add 5/7 times\the.second row to the third. The matrix 142 applies

thus:

to yield

2 2
1

7 8
0

, 5 13

T

7

17

7

which i the matrix form of the system (III) of Section 3-2.

.10.

2

The third molecule, with 'its one atom, has the corresponding matrix

multiplier



136

M3

1 0 0

since it leaves the first equation unaltered, leaUes the second equation unaltered,

and multiplies the third equation by 7/17; applying

or

0 1

0 0

we obtain

0

0.

1

0

6

17

7

1

1

NoN2) of course, is precisely the matrix version of the e4uiva1ent

triangulated.systielm (IV) of Section 3-2:
t

2 2
= 1

/

8 6
y z -7-,

from which the backward solution yields

To review the foregoing process, and

z = 1,

(x, y, z) = (1, -2, 3) as before.

to visualize the operations more

(2)

generally, we might note tikat the Successive matrix multipliers for the scheme

(5) of Section 3-2 are ,.

:113
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0 '0

i

0

1.

and

1

0

0

0

1

0
1

all

a
21

a.
. 11

an

all

b
22

b
32

b
22

c33

Let us 'now take advantage of the associative law for the multiplication of

matrices to form the product

0%.

= 0 1

0 0
a.

u
1

0

2 3

1 5

-17 17 17

0 0

7

5

0

1

n

2 3

1 57 7 .1

.N

2

1

NA4,

Sao

If M it applied the original system of equations (I) in matrix-form, thus;

tr.

1

3 2 -2

2 -1 -4

-1 1 5

^

1

2 '3

7 7

1 5

17 17'17

then the equivalent triangulated system (2) is obtained directly, as you can

a.
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verify by performing the numerical computation. .

If we are confronted with a secong system of linea,equations, say

\,

3x + 2y - 2z . - 2,

224- y - 4z . - 12,

-x + y + 5z = 18,

in which the coefficients of the variabirs are ttee same as in the original system

(I), while the right-hand numbvers are different, then we can again apply the

same matrix )1 to obtain the same triangulated matrix of detached coefficients,

thus:

o

2 3

7 7

I 5

17 17 17

or

1

0 1

0 0

=MP

o

2 3

1 57
17 17 17

[yz

whence the backward-solution process yields

When we are confronted with the problem of solving two or more systems of
. .

linear equations that differ only in theie right-hand members, however, it is

advantageous to effect a further simplification of the matrix of detached ca-

efficients obviating the necessity of performing the backward solution each

time. This will be done through the diagonal process in the next section.
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Exercises 3-4

1. Solve the following systems of equations by the triangulation method:.

(a) 3x + 2y 2z = 4,

2x y 4z ='2,

x + y + 5z = 7;

2.* Solve by the triangulation method:

r-

1 4 7

(a) 2 3 6

5 k -1

1

(b) 2

5
0

(c)
1

2

5

1
(d) 2

5

...111

In

diu

b) x y 2z = 3,

y + 3z = 5,

2z + 2y 3z = 15.

3

01 ,

7

4 7

3 6

1 1

3

-
A

4 7 1
3 6 t 3
1 1 4

enn

0.10.

4 7 0
3 6 NIL 01 .
1 0

a_ mob

. Solve by the- triangulation method:

4 0 2 x u 4 2

1 3 1 y v 1 6 .

2 1 5 z w 3 7
_

3-5. The.Diagonal Method

For the forward triangulation solution of the systmn
ON%

3
4

n.

er.

you will recall that ift Section 3-4 we sought an equivalent matrix equation

having coefficient m;atrix of the form

139

(I)
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(1)

'without regard to the.unspecthed,entires a, b, and c in the upper right-

hand portion. After,this was achieved, the backward.solution was employed to

obtain the answer:

(x, y, z) - (3, -2, 1)1

In case we have to solve several systems of linear equations, all with the

seise coefficient matrix but with different right-hand members, as in some of the

problems at the end of the preceding section, it is more efficient to obtain an

e4uivalent system with the identity matrix

-
1 0 0 -\
0 1 0 (2)

ip 0 1

as coeffiaent matrix, for then the backward-solution procedure is eliminated.
7

It is always 16ossible to obtain a coefficient matrix of the forly(2) if it is

Apossible to Obtain-one of the form (1).
r.

You should recall that

1 0 \O

4\ in order to appreciate the value of having a coefficient matrix of the form

(2). Can you tell how it is that no backward solution is needed in this case?

Can you suggest whysa method of solution involving a matrix of the form (2) might

be called the "diagdnal method"? (The l's in Equation (2) are on the principal

diagonal of the matrix.) What matrix correspond§ to (2) if the system consists

of 2 equations in 2 variables? of 4 equations in 4 variables?

*e.

14'1
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Of course, more work is -required to obtain a coefficient matrix of the form

(2) thari is .required to obtain one of the les& special forc (1).. You will recall

that in obtaiaing an vquivalent system with coefficient matrix of the form (1),

the procedure-:consists ordinarily of 3 Imolecules," of 3, 2, and 1 "atoms,"

\. respectively. In obtaining a coefficient matrix of the form (2), as you will

see, the procedure again ordinarily consists. of 3 molecules, but now each molecule
, .

contains 3 atomsklipzer, in general the additional work in obtaining a coef-

..."*"."61.41,..

ficient matrix of ehe form (2) id more than compensated for even if thqie are

0 \

only 2 systems with identical coefficient matrices to be solved.

.0"

The diagonal method differs from, and extends, the triangulation method as

follows: whereas in the triangulation method we seek to obtain a coefficient

matrix with l's all along the principal diagonal and with O's everywhere beloO
e

this diagonal, in the diagonal method we seek to obtain a coefficient matrix

With O's also above the principal diagonal. The way to determine the matrix

multipliers in order to do this should be apparent from a review of the rules

given in Section 3-4; his wikbe-iflustrated in the next section.

Exercise&

1. Perform the following multiplications:

(a) 2 -1

=

3 2 -

-1 1

^

[is
17 17 17

1 12 10

17 17 17

6 13 8
(b)

17 17 17

5 7

1 12 10

17 17 17

6 13 8

17 17 17

1 5 7

17 17 17

3 2

2

1 1

2. Multiply both members af the matrix equation
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on the left by

o.

-1 12 10

6 -13 -8
[-1 5 7

iY
0

17

,
ft

3 2 -2
2 71 -4

-4 I 5

and use the result to solve the equation.
4

3. Solve the following system of linear equations:

x + 12y + 10z = - 9,

6x - 13y - 8z = 31,

-x + ,5y + 7 8.

3-6. Matrix Inversion

eahmt

Let us app).y the diagonal method to the system (I) of Section 3-5. But to

emphasize the fact that the procedure will work equally well for any set of

right-hand members, let us replace the-right-hand member

43.

4 by U
3

11+

thus:

^
3 2 -2.

2 -1 -4
-1 1 5

11

&

vul

This is an equation of 'theifoim

AX=U (2)

the coefficient matrix A determines a matrix function with independent variable

X on the range of 3 X 1 'matrices and dependent variable U 'on a domain also

1 I 9
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-r

of 3 x 1 jAttrices.
k

A

If the matrix A has an inverse ;A-
1

, so that

143

-
A-

1
A I = A A

1

and if we can determine A , then we can solve the equation (2) for X 1.n terms

of U by multiplying on the left by A-1:

whence

: -1
A U,

X = A
1

U:

4

thus we have the inverse matrix function of the matrix function given by Equation

.741
(2). Our-problem is to determine the matrix, Al in case this matrix exists for'

our partictilar example. r
For symmetry, let us write Equation (1) in the equivalent form

3 2 -2
2 -1 -4.

-1 1 5

1..
0

...o . w

with a coefficient matrix on both sides of the equation.

)

Looking at1 the left-hand coefficieht matrix in Equation (3), we determine a

matrix nmltiplier to adjust the first column, as follows:
%

2-
-5

1
-3-

0

1

0

0

0

1]

^

This multiplies the firs/row

-2(1/3) = -2/3 times the first row to

first to the third, yielding

1 0 0

0 1 0

0 0 1

the matrix.of coefficients by 113, adds

the second, and adds 1(1/3) = 1/3 times
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1.

0

fa,

'2 Z-

5
7 8,

3 3
5 13

3 3

O.%

,Y

14

0

-Adjusting.ehe second-column of the left"hand coefficient matrix, we have

1
2

3

7

. 5

1

0

1

2

-3-

5 13

. 3

.1

2
7
3
7
5

^
1
3,
2

1

0 0

1 0

0 1

inma. 111

_w

This multiplies the second row by -347, adds (-2/3)(-3/7) 2/7 times the second

row to the fir:st, and adds.(-5/3)(-3/7) = 5/7 times the.second row to the third

f-

to yield numbers 0, l,/jand 0 the second column:

\.)

rl 0
. 7

8
0 1

7
17

0 '0
7

4.11

1 t 2

7 7
2 3

,7 7
1 5

7 7

t
-. -,

0 1.1

a V

1 14

:Similarly, ad)ustfhg the third column of the left-,hand coefficient matrix,
P.

4

we'perform die multipaication

1 0

O 1

O 0

obtaining

101
17
8
17
7

17

1 0
10-
17

1 ;
17

0 7
yl

[xz

0,
10 1. 2

17 7 7
0

8 2 3
1 7 0

17
7 1 5

0 1
17 7 7



gik

0 0

1 0

0 0 1

1 t2

17 17

6 13

17 17

1 5

17 17

Equation (4) can be written equivalently as

1 12
17 17

6 13
17 17

1 5
17 17

7

10

[vw f'
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(4)

17

8

17

7

17

10-
17

8

17

7

17

(5)

In particular, to return to dir original system (1) of Sectipn,I-5, if for

we get

71.

we take,.

1 12 10-
17 17 17
6 13 -8

17 17 17

1 5 7

17 17 17

4

3

-2

0 1

which coincides with the.result obtaineddn.Section 3-4 by the triangulafton

method.

Again, for the problem

3 2 -2 -4
2. -1 -4 2.

-1 1 5 7
7111,

we obtain

1 5-L?
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c4

**

1 12 10

17 17 17

t6 13 8

17 17 17

1 5 7

17 17 17

[

A.

You should compare Equations (1) and (5). Let

A is 2

1

1

0
0

wele

90
17

106

17
63

17

2-2

1
1

0
1

0

0

0

1

4
5

,

*

X

f

z -

U

1 12 10

17 17.
6 13

17

8

17 717
1 5

17

7

.17. 17

=

17

The above procedure amounts to multiplying

AX = U

.on the left by

BAX = EU,

to obtain

X = BU.

Accordingly, we have

BA = 1,

the identitly matrix. You can show likewise that

Ns.

(6)

'AB = I. (7)

Thus the ma trix A has B as its inverse, as deffitned in Chapter 1:

153
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Is it an accident thiq the matriir B, which we determined as the product

of elementary matrices in.such a way as to satisfy Equation (6), also satisfies

Equation (7)7 Not at all: even though we know tivat the commutative law does

not generally hold for matrix multiplication. The.fact that Equation (7) follows

from Equation (6) isitan instance of the following ,result:

or.'"

Theorem 3-1; If A and B are n X n matrices, if B is wprOduct of

elementary matrices, and if BA = I, where I is the n X n identity matrix,

then

case

-

AB = I.

Proof. For simplicity, we shall give the proof only for the representative

%

B = E
2

E

where E
1

and
2

areelementary matrices;. and we shall use the fact that every

elementary Matrix E hai an inverse E-1 as indicated on pages 132 and 133.*

Since

BA = I and B = E E
2 1'

we have 0

Ei El A = I,

whence

E
-1

E
-1

E
1 2 2

Consequently,

II

-1 -1
E
1

E
2

I.

A



or

- -I -I -4 -IEl (E2 E2) El A = El E2 I,

E-
I
E A = EI

l
E2
-I

'. 1 1

-
since E

2

I
,E

2
th= I and e product of I by 'any matrix is the matrix itself.

But also El El = I' so that

.*,
. Since

wechave

-
A.= E

1
4 E21.

and BEZEia

1 -I -1
AB = E E .E E

1 2 .2 1

= E-1(E-1 E )E
1 2 2 1'

whence
ft, .

or

AB = Ell E

AB = I,

as desired. This completes the p of of the theorem

Now look once more at the left-hand members and at the right:4mnd members of

the equations starting with Equation (3) and ending with Equation (4), and swp-

press 464 them the matrices

,/#
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-
u

and

-7- -

Thus on the left and right, respectively, you start with

and end with'

A and I

-
and A

1
:

ihe sequence of transformation matrices that leads from A to I leads also

from I to. A-
1

. We have thus outlined a method for the determination of the

inverse of the matrix A.

Some matrices, however, do.not have inverses, as you learned..in Chapters

1.and 2. We sha,fl be concerned with such a matrix when we deal with the matrix

of coefficients In the examples (a) and (b) at the start.of.the next sttion.

Exer6ises 3-6

1. Solve the following systems of equations by the diagonal method:

(a) 3x + 2y - 2z = - 4,

2x'- y - 4z 2,

-x + y + 5z =-7;

(b). x y - 2z = 3,

y + 3z = 5,

2x +2y - 3z = 15,

2. Solve by the

(a;

(c)

diagonal

1 4 7

2 3 6

5 1 -1

1 4 7

2 3 6

5 1 -1

method:

3

0

7
^
^

1

3

-4

4

(h)

(d)

[
4

2 3

5 1

1 4

2 3

5 1

.
7

6

-I

7

6

-1

al
iV ^

3

0

-2

3. Solve by the diagonal method:
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4 0 2 x um r 4 2 6

1 3 1 yvns a 1' 6 2 6 .

*2 -1 5 zwpc 3 7 7 12
OM.

4. Solve by the diagonal method:

2x + y + 2z 3w Q,

4x + y + z + w a 15,

6x y z = 5,

-4x 2y + - w a 2.

5. Solve by the diagonal method:

9x y mg 37;

8y 2z 4,

t7z 5w 17,

2x + 6w 14.

6. Determine the inverse of each of the following matrices:

[

.100

1

1 0 0 4 .3 2

'3 5 , Q .1 -/

-2 0 1 0 0 7

7. Use your work on Exercise 4 to solve

2 1 2 3
4 1 *1 1

6 1 1 1
4 2 3 1

s w

t x
u y
v

1 0 0

1 4
-3-

1
72- 3 2

6 1

6 12

4 8

-2 7

8. Explain how it is that the diagonal process is not self-destructive that

is, that after a 0 or 1 has been established-in a certait;posiCion in

the coefficient matrix, this value persists at that place in subsequent

steps.

9. Express the matrix'



2

3

as a product of eleMentary matrices.

Give a proof of Theorem 3-1 for the,case

B = E3 E2 E

151

where E E
2'

and E
3

' are elementary matrices. Try to prove the theorem

for the general case

B = En E
n-1

E
2

E
1

,

3-7. Linear Systems in General

Earlier in this chapter; in Exercise 3-2-:3, we were concerned with the linear

systems,

(a) x +0.2y z = 3,

y+ z= 4,

4x - y + 2z = 14;

(b) x 2y z = 3,

x y + z = 4, :

4x y + 2z = 15,
5.

which look innocent enough. But for them the first step of the triangulation

method of solution yields

(a') x + 2y z = 3,

-.3y + 2z = 1,

- 9y + 6z = 2;

and the second step gives.

(1)') x + 2y z = 3,

- 3y + 2z = 1,

9y + 6z = 3,

4
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(a") x +1y z zg 3,

' 3y + 2z 1,

(b") x + 2y z 3,

3y + 2z .1: 1,

0 = 0.

If there were a solution for the system (a); then wg would have 0 = 1;

hence there is no solution for this syStem.

Now, by contrast, there is no mathematical loss in dropping the equation

0 0 from the system (b"). Without this equation, the system can be written

equivalently as

(bt" ) x 2y an 3 '+ z ,

1 2y 3 z.

.Application of the backwardsolution portion of the triangulation method to the

system (b"') yields

Whatever value

and y as dete

exaaple, a few

deo

is given

11 +/
z,x T

1 2y
3 3

z, this value and the

rmined,by the equations (1)

solutions are shown in thd

satisfy

following

corresponding values of

the original system (b). For

z Y

2
1
0

1

4

1
4

3

11

1

1

3

1

3

1
3

3

6

13

table:

Do you have an intuitive geometric notion of what might be going on in the

1 59
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above systems (a) and (b)? RelatiVe to a 3-dimensional rectangular cobrditlate

system, each of the 3 equations in either (a) or (b) represents a plane. Each

pair of planes actually intersect in a line. The lines of intersection in

. either (a) or (b),might be expected to be.c current n a pc0i5/ However, in

(a) the 3 lines are 'parallel,biit not coincident; there is no point that lies on

all 3 planes. On the other haild, in (b) the 3 lines are parallel and coincident;

there is ail erhire "line" of solutions.

How many possible configurations, m regards intersections,, can you list (

for 3 planes, not necessarily distinct from one another? They might, for

example, have exactly one point in common; or two mightbe coincident and the
4

third distinct from but parallel to them; and so on. There are systems of4lidear

equations that correspond.to each of these geometric situations.

Here are two additional systems that even more dbviously than the..above A

system (a) have no solutions:

(c) x = 2, (d) x y z 2,

x = 3; x 4.y + z = 3.

Thus.you see that the number of variables as compared with the number of'equationsr te

does not determine whether or not there-is a solution.

It is plain that tha.mutine triangulation and diagonal methods can be

applied to systems of any number of linear equations in any number of.variables.

Let us examine the general Situation and see what can happen. Suppose we have

a system of linear,equations in-certain variables. If 'any\rariable cc $ with

coefficient 0 in every equation, it plays no role ahd we drop it. uppose we

have applied k molecules of the diagonal process; in doing this, since we

---gOmetinles divide by the coefficient of one of the variables, it might be

to rearrange some of the equations, by the method of paragraph (0)

in Section 3-4, or to rearrange some of the terms in all the'equations. At the

end of this process, we arrive at an equivalent set of equations of the form

1
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x
1
+: linear terms in variables other than x1,...,xk =

x
2

4- lOtnear terms in variables other than xl,...ock = b2,

xk + lirfear terms in variables other than

and OTHER EQUATIONS in which the variables xl,...,xk.do not appear'.

If any variable occurs with a nonzero coefficient in any one of the OTRER

EQUATIONS, we can continue our elimination process. Eventually we 'will come to

an end. At this point, our system of equations must look like this:

+

x2

,

linear terms in variables other than xl,...,xk 741;

linear terms in variables other than, xl,...,xk = b2,

+ ,linear terms in variables other than xl,..L,xk = bk--k

. 410r1in EQUATIONS in which no variable appears with a nonzero coefficient.

t

k

What'can one of these OTHER EQuATIoli. whichmust be an equatiOh'in which

4.

no variable appears,:look like? Either it is of the form 0 = 0, in which case

we might as well drop it; or itlis of the form 0 b, where b is a constant

different. from zero, in which case it is a contradiction: Hence we see that:

either the OTVER EQUATIONS all state simply 0 = 0, in which case they can be

dropped, or at least one of the, OTRER EQUATIONS is an obvious contradiction.

Since the system of equations (3) is equivelent to the original system of

equations, (3) ,can contain contradictions, Le., state impossibilities, only if

the original system of equations also states impossibilities, i.e., only a the

original system.of equations simply has no solution.

Thus, if theAOTBER EQUATIONS in (3) are not all simply 0 = 0 perhaps

repeated several times, then the original system of equations has no solution.

Summarizing, we see that we have established the following result:

4
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Theorem 3-2. If the diagonal method described above is repeatedly applied

to an arbitrary system of linear equations and carried through to the end, then

we arrive at one of these two situations:

(a) at least one palpable contradiction of the form .0 = b, b being

some nonzero number, so that the orginal system of Fquations has no salution;C'

(b) --in.equivAleut system of equations of the form

. linear terms in variable other than xl,...,xk = bl;

x
2
+ linear terms in variables other than xl,...,xk = b2,

xk linear terms in variables other than x = b
1 K k*

Let lid examine case (b) more carefully.. -there aye two subcases: eithv (i)

there are really no variables other iihan x ;cc or 0.1.) there reallytarep

variables other than. xl,...,xk.

In case (i) our system of equations reduces to x1-= bl, x2

Xk bk, ahd the solution is unique.

In case (ii), there are v4riables other than xl,...,xk. Denote the vart

.ables other than. xl,...,xk by the letters yl,y2,...,y
n

where n > 1. We can

transpose and write the system (4) of equations in the focal

lc
1

= b
1
+c

1
y
1

+ d
1
y
2
+ -. + e

1
y

x2 = b2 + c2y1 + d2y2 + + e y
2,n

xk = bk + co), + dky2 + + ekyh

It is clear that this system of equations will be satisfied if we assign

1

(5)

-arbitrary values to the variables yl,...,yn, and then determine the values of

from (5). In this case, our solution evidently is not unique, As was
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illuatrated in the table on page 1452.

Summarizing, we have the following theorem:

Theorem 3-3. Let a system of arbitrarily many linear equations in arbitrar-

ily many variables be givens If the diagonal method is repeatedly appliett to die

given system of linear equations, and carried through to the\end, then we arri1.4

at one of these thee situations:

(a) at least one palpable contradiction of the form b being

some nonzero number, so that.the original system of.eCluations ha no solution;

(b) an equivalent system of'the form xl = b
1?

x
2

4. ".,xk = bk,

one for each of the unknowns in.-the original system of equations, s that there

a unique solution;

(c) an equivalent system of the form

x/ bi cly1 + d1y2 + elYns

13,2 q2Y1 11c12372 egre

S

xk = bk + ckyl + dky2 ekyn,

,(6)

the turyns oi the initial system being x1,...,xis and yl,...,y
n

, and not all

coefficients of the y's different from 0, so that there i an infinitude of

solutions, which are obtained by giving arbitrary values to the variables

and then determining the remaining vatiables xl,...,xk from the

equations (6).

.4

Thus the question of solving systems of linear equations in arbitr ily

many unknowns is settled in all possible cases.
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Exercises 3-8

1. (a) List all possible conftgurations, as regards intersections, for 3

dtstinct planes.

(b) List also the additional. possibale Configurations if the planes are

allowed to .be coincideht:

2. Solve by the diagonal process:

x +. y + z = 6:

x + y + 2z = 7,

y z

(

3. Find the solutions, if any, of the system of eqUations

4.

2v + x + y + z = 0,

v - x -1- 2y + z 0,

4v x + 5y + 3z = 1,

y z 2.

Find the solutions, if any, of the system of equa tions

x + y z

x y 2z at CI*

X + 2y + 3z = 1,

3x y - 5z = 1.

5. Find the solutions, if any, of the .system of iequations

+ 2x + y +- z = 0,

v + x + 2y + z = 00

- v 4x + 5y + 3z = 1.

6. Find the solutions, if any, of the system of equations

+ x+ y+ z= 1,
x- y+ z= 2,

v + 2x - y + 2z = 0,
_A

- 3x - 3y - 7z = 4.

1 34
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ChaRter 4

REPRES'ENTATION OF COLUMN MATRICES AS GEOMETRIC VECTORS

4-1: the Algebra of Vectors

In the vresent chapter, we shallsdevelop a simple geametric representation
4

for a special class of matrices --namely, the set of column matrices [a] with

two entries each. ,The familiar algebraic operations 'on this set of matrices will

be reviewed.and also given geometric interpretatiOn,'which will lead to a deeper

dnderstanding of the meaning and implications of the algebraic concepts.
A

By definition, a, column vector of order 2 is a 2 X 1 matrix. Consequenttly,

using the rules of Chapter 1, you can add two such vectors or mAtiply any one

oftham by 4.number. The set of column vectors of'order 2 Idol, in fact, an

algebraic structure whose properties were largely explored in your study of the

rules.of operation with matrices. In the following pair of theorems, we sum

marize what you Already know of the algebra of.these vectors, and in the next

section we shall begin the interpretation of that algebra in geamAtric terms.

0

Theorem 4-1. Let V anN W be column vectora of order 2 and let A be.

a square matrix of order '2. Let r be a number. Then

V + W, rV, and AV

are each column vectors of order 2.

Theorem 4-2. Let V. W, and U be column vectors' of order 2,

and B be square matrices of ordr 2. Let .1- and s be numbers.

'the following laws are valid.

I. Laws for the addition of vectors:

(a) V+W=W+V,

..,

-.159

4%

and let

Then all

S.



1.60

(b) (V + W) = V + (W 4-

(c) V +0
2 1

= V,

(d) V + (V) 10
-2 X1

11. Laws for the numerical multiplication of vectors:

(a) r(V + W) = rV + rW,
4

(b) r(sV) = krs)V,

(c) (r + s)V = rV + sV,

(d) OV = °2X1'

(e) 1V = V,

* (f) r0
2 1

= 0
2 1.

III. Laws for the multiplication of vectors by matrices:

(a) A(V + W).= AV +AW,

(b) (A. + B)V = AV 4- BV,

.(c) A(BV) = (AB)V,

(d) 0 V 0
. 2 2X1'

(e) IV = V,

(f) A(rV) = (rA)V =

In reading Theorem 4-2 recall that 02)(1 is the column vecter of order

2, and 0
2

the square matrix of order. 2, all of whose entries are O.

Both of the preceding theorems have already been proved for matrices. Since

vectors are merely'special types of matrices, the theorems as stated must like

'wise be true. They would also be true, of course, if 2 were replaced by 3,

.or by a general n, throughout, with the understanding that a column vector of

order n is a matrix of order n X 1.

-I .31_;
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let

Exercises 4-1

A =

[3]
4

3

[2

*

--'1]

W =

0

[-21. and
1

and B = [712

U =

d;

4]
*2 '

and

161

let r = 2 and s = I. Verify each okf the laws stated in Theorem 4-2 for

this choice of values for the variables.

2. Determine the vector

A =

V

3. Determine the vector V

0

W 2[

4 Find V, if

.16t- A
2/3

t.
1/3

5. Let

Evaluate

(a) A N and (b) A N .

such that ,AV AW AW + BW, where

1
'

W = and B =
[-4 2

1 0]
9

such that 2V + 2W = AV 4- By, if

1 2

A
,and B 1 .

2/3 ' 'D

[
1 2

,2 1
, and A(3V) = A(BV).

1/3

A
all al21

a
21

a
22

(c) Using your answers to parts (a) and (b), deteraine the entries of A

if, for every vector V of order 2,

AV = 02
X 1

.

(d) State your result as a theorem.

.0"
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/I)6. Restate the theorem obtained in Exercise 5 if A is a square matrix of

order n and y stands for any column vector of order n. Prove the new

theorem for n = 3. Try to prove the theorem for 'all n.

7. ,Using your answers to parts (a) and (b) of Exercise 5, determine the entries

of A if, for every vector V of order 2,

V V.

(/:

State your result as a theorem.

4,

8. Restate the theorem obtained in Exercise 7 if A is a square matrix of order

n and V stands for any column vector of order n. Prove this theorem for

n = 3. Try to prove the theorem for all n.

.9. Theorems 4-1 and 4-2 summarize the propeeftes of the algebra of column

vectors with n entries. State two analogous theorems summarizing the

properties of the algebra of row vectors with n entries. Show that the

two algebraic structures are isomorphic.

4-2. Vectors and Directed Line Segments

In graphing functions and relationships, you discovered the great advantage

in having a simple numerical language to describe the location of a point in a

plane. You remember that an,ordered pair of real numbers constitutes the ca

ordinates of any given point in the plane. But that same ordered pair of numbers

can be regarded as a row vector or as a column vector.

Thus, in Figure 4-1 the point p that is 3 units to the left of the y

axis and 4 units above the x axis is represented by the pair of numbers (-3,4).

However, that same number couple, written [73 , is simply a row vector;

written
'

it is a column vector. Consequently, a row or palumn vector
4

with two entries (or components), [u Id or , can be represented geo

metrically by the point P:(u,v) in a given rectangular coordinate plane.

s.k?
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4

It is often more, useful, though, to think of the row or column 1;ector as

being represented by the directed line segment from 0 to P. We denote this

directed line segment by the symbol.: OP . Thus, the row or column vector is

represented by a geometric quantity having length and direction. We shall call

this geometric quantity a geometric vector.

P:( -3,4)

Figure 4-1. A geometric vector.

111.

In Figure 4-1, the directed line segment or geometric vector OP is

pictured by the arrow drawn from 0 to P.

The length of OP is easily calculated by using the Pythagorean Theorem.

For the point P: (-3,4), the length of OP is

V/ (-3)2 + 42 ..V/9 + 16 5.

One way of specifying the direction of OP is simply to say that its

direction is that of the ray issuing fromlthe origin and passing through (-3,4).

It is mdch more useful, however, to indicate the direction of the ray by giving

the cosine and sine of the angle having the ray as terminal side and the

positive x axis as initial side. Thus, the direction is specified by the numbers

3/5 and 4/5. You can verify the correctness of these numbers by recalling that

the cosine and sine of an angle in standard position, that is, an angle placed

in the coordinate plane so that its initial side is the positive x axis and its

terminal side is the ray that issues from the origin and passes through another

point (x.L , y
1
), are given by the respective formulas

1q9
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x
1

yl
and

Regarding these numbers -3/5 and 4/5, it is worth while noticing that -3/5

is the cosine of the angle that OP forms with the positive x axis and 4/5 is

mr,111.

the cosine of the angle that .0P forms with the positive y axis; consequently,

these numbers are called the "direction cosines" of OP. (Can-you tell why the

slope of OP, i.e., the number -4/3, will not specify the direction of the line.

segment fram 0 to P?).

2,4 In general, the column vector

%keg

1011.

is represented by the directed line segment OP from the origin to the point

P:(u,v). The length of 5 is called the length or the norm of V. Using the

symbol IIVII to stand for the norm of V, we have

IIVII
2
+ v

2
.

4
Thus, if not both u and are zero, the direction cosines of OP are

respectively.

4.

and
IIVII IIV1I *

SiTilar statements could be made concerning the row vector [uo] , but

for the present we shall consider only column vectors and the corresponding

geometric vectors. Hereafter, the term "vector" will be used to mean "column

vector."

. We shall call .
0

the zero vector or ttlnull vector. It will be

regarded as being represented by a geometric vector of length zero to which no

1/0
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unique direction is assigned. For the sake of convenience, however, we shall

say that the zero vector is directed and that it has the same direction as any

and eliky other vectoi. _

4 Consequently, each vector determines a unique directed line segment
.. sl

issuing from the origin of a given rectangular coordinate system. Conversely,

1]--ig.7aCi s gmitch directed line seent determines a uniqu vector [ .l'Thus, a on e-v

to-one correspondence has been set up between the set of column vectors having

two real-number entries and the set of directed line segments lying in a Cartesian

coordinate plane and issuing from,the origih. In the next section, we shall dis-

cover ail interpretation of Ahe algebraic operations on vectors' in terms of geo-

metric Dperations on directed line segments.

The association between vectors and erected line segments introduced in

this section is as applicable to a-dimensional space as it is to. the 2-dimensional

plane. The only difference is that a directed line segment in a-dimensional space

willrepresent a vector of order 3, not a vector of order 2.

Exercises 4-2

1. Of the following pairs of vectors,

1

1

(e) -2

- 5 12]
(f)[-121 5 ;

(g)
[:--3/721' [-621 ;

(h)

(i)

8 16

15
, 30 '.

._ J L.

1 -41

5
,

I

3ti3

d , 4t .

which have the same length? Which have the same direction?

2. Let V = t Draw, the arrows repi4senting V for
3
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,
t = 2, t = 3, t = - 1, 't = - 2, and t = - 3.

In each case, compute the length and direction cosines of V.

3. In a rectangular coordinate plane, draw the directed line segments repre
,

senting the members of each of the following sets of vectors. Use a dif-

ferent coordinate plane for each set of vectors. Find the length and

direction cosines of eadevector:

('a)
[011

(b) , ,

11 [-4
(c/ 21

(d) [fl

(e) [:I , ,

and

and

and

and

4. Let V = Draw the line segments representing V for x = 1,
3

x = 2, x = 3, x = - 1, x = 2, and x = 3. In each case, compute

the length and direction cosines of V.

5. Let V = t +
LmJ

b

Draw the line segments representing V, if t = 0, + 1, + 2, and

(gr;-171, b = 0;

(b) m = 2,

(c) m = 1/2, b = 3.

4.)

In each case, verify that the 5prresponding set of five points (x,y) lies

on a line.

6. Two vectors are

them lie on the

called collinear provided the geometric vectors representing

same line through thArigin. If A and B are nonzero

C



collinear vectors, determine the two possible relationships between the

direction-cosines of A a4d the direction cosines of B.

t.

ermine all the vectors of

(a).

(b)

(c)

(d)

the form that are collinear with

/
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r-

4-3. Geometrical Interpretation of the Matiplication of a Vector by a Number

The geometrical significance of the multiplication of a vector by a number

is readi4guessed on compasing the geometrical representationi of the vectors

V, 2V, and 2V for

.By definition,

while

It

t'V
Tfius, as yOu can see in Figures 4-2 and 4-3; the arrows representing V and

2V have the same direction, while 2V is represented by an arrow

the opposite direction. The length of'the arrow associated with V

pointing in

is 5, while
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Figure 4-2. The product of
a vector and a positive number.

NP

Figure 4-3. .The product of
a vector and'a negative number.

the arrowwrepresenting 2V and -2V- each have length 10. Thus, multiplying

: V by- 2 produced a stretching of the associated geometric vector to twice its

original length while leaving its direction-Unchanged. Multiplication by '2

not only doubled he length of the arrow but also reversed its dirFetion.

These observ tions lead us to formulate the following theorem

L./ r
Theorem 4-3. Let the directed line segment OP represent al vector V

and let r be a number. Thenrihe vector rV is represented by a directed line

segment whose length is Irl times the length of OP. If r > 0, the repre-_
.1

sentative of rV hag the dame direction as OP; if r < 0, the direction of

the reprpsentative of r14,-. is opposite to that of OP.
-1,

Now,

Proof: Let V be the vector . Then

IIVII =
11 2 + V

Z
.

LU
rV =



hence,

-169

2
I irVI = AAru)- (rv)

2

\,42(u2
v

irk/1 2 2

= Irl

Thh\proves the first part of the theorem.

If

r = 0 or
[ool

the'second part'of the theorem is certainly true.

If

r # '6 and V # L°0] ,

the direction cósines of OP are

and

while those of the representative of rV are

ru rv
and

fri IIVII Irl IIVII '

If. r > 0, we have Irl a r, -whence it follows that the arrows associated with

V and rV have the same direction cosines and, therefore, the same direction.

If r < 0, we have 11.1 r, and the direction cosines of-the arrow associ-

ated with V arv.the negatives of those of 10P. Thus, the direction of the
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representative of rV is opposite to that of OP. This completes the proof of

the theorem.

One way of stating part of the theorem just proved is to say that if r'qs

a. number and V is a vector, then V and rV are collinear vectors; that is,

they are represented by arrow lying on the same line through the origin. On the

+other hand, if the arrows representing t vectors are collinear, it is easy to

show that you can always express one of the vectors as the product of the other

vector by ,a suitably chosen number. Thus, by checking direction cosines, it is,

easy to verify that

10
20 and 1

[ 4

are cóllinear vectors, and that

Pg]
while

4

4

In the exercises that follow, you will be asked to show why the general #2sult

illustrated by this example holds true.

Exercises 4-3

1. Let L be the set of all vectors collinear with the vector
[23]

in file following blanks so as to produce in each case a true statement:
4

I

4 6
(a) e L; (e)

[f
L;

(b) ; e L;
fl

(f) for every real number t, 13t 6 L;
s

,f

(c) Pil e 14
(g) for every real number t,

(h) for every real number h 0 0, [] h f L.
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3. Verify graphically and prove algebraically that the vectors in each of the

following pairs are collinear. .In each case, express the first vector as

the product of the second vector by a number:

4. Let V be a vector and W a nonzero vector such that V and W are col-

linear. Prove that there exists a real number r such that

V= rW.

5. Prove:

(a)

(b)

If

If

rV =

rV =

t and

and

r # 0,

0
V # [

0

then

'

V as

then r

.

0.

'6. Show that the veceor V + rV has the same direction as V- if r > 1,

and`the opposite direction to V if r < - 1. Show also that

IIV rVII = IIVII 11 + rl.

4-4. Geometrical Interpietation of the Addition of Two Vectors

The'addition of two vectors has a geometric interpretation that is somewhat

less obvious than that for the multiplication.o*f a vector b a numb'er:

If

I 1]
V-= \ and W = {Cd

[J
.then V + W = k

+IP
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se

It is evident fromFiguOL 4-4,that V + W is represented by the diagonal drawn

from the origin to the fourth vertex of'the parallelogram (actually, the rec.

tangle), three of whose vetices .are"(1, 0), (0, 0), and (0, 1).

1

4*
<

FigUre 4-4. The addition of the Figure 4-5. 'The additiqp of phe

1 ,vectors AU ve6tors fk [] and 1
0 1

IL

.V = ] and W =
1
I

j.
I , then V + W

0

Looking at the representations of these three vectors in Fig11,4-5, we see that

V.+ W this time is re cesented by the diagonal drawn from theorigin to the

f h vertex of the parallelogram having (3, .1)Q0, 0), and (2, 1) as three

of its vertices.

of

'The pattern common to our two examples certainly suggesté that the additign

of vectors cotresponds to a kind of parallelogram rule for.adding directed line

segments. If the pattril holds in general, then V + W is represented by the

diagonal from the origin in the paialtelogram having, as adjacent sides, the

geometric vectors representing V and W.

A simple way tq co i-uet that diagonal is indicated in Figure 4-6. If

"- OP represents V and OT represents W, construct the line segment PR

I
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SF

I*

Figbre 4-64 ,Construction tor vector addition.
p.

. having the same length and'ditection as OT. Then OR repredents V +.W.

173

This method of constructing the repres6tative of V + W has the advanage

of being applicabilp.even when V ana ,W dre collinear vectors. Our bnly

to'veriy that the coAstruction actually does yiild the representa

tive of V + W whatever choice is made for V and W. Let

Then

and W

0-
,

!It

.

.% r

+ r

, e
V + W .. :

+ s
,

\ , A
A

If' V,.. and W are not colli ear, 'the points (0,'0), '(u, v) and (r, s) are

1
4.

digtinct and'constitute'the ertices of-a parallelogram; see Figure 4-7,.
,

.

To show ththe föurth verc of that parallelogram is the point (u + r, v + s),

.. '. c

,

' you need merely show that the linesegment jolng (0, 0) and (f, s) hls the same
,

t

length as the line segment joing (u, v) and (u + r, v + s), and similarly Oat
fiw

v) has the same length sip the'line segmene

ing-(r, s) And (u + r, -+ O. Complefing this argument is just an exercAse
. Ise. 4

,the line segmentjoing (0,0) ana
- -

..

t.

4

N.

.1111

!-

4)'
5.
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. Figure 4-7, The addition of noncollieear Vectors,
rTi

and

S.

. in using the distance formula.

If V and W are collinear., the* construction'of the ptoposed representativ.e

of V + W is Medicated in Figures 4-8 and 41-9. It is easi id verify'that in

Figure 478. The additid f col Figure 4-9. The 'addition of collinear
linear vectors in the sam direction. vectors in opposite directions.

both cases we have the algebraic equalitieS

Q

4 and

ON 011 + 11181

4

OS



NR = NK 4- KR

= v S.

The details of the proof will be left as hn exercise for the student.

We state the result formally as a theorem.
p.

- ..
Theorem 4-4. If the vectors .V and W are represented by the directed

175

line segments. OPand OT, respectively, then V + W is represented by OR,

where PR, is theldirected line Igment having the same length and direction as
IP.

S. 4.

Since V W = y (-W),. the perdtiOn of subtri ting one vector from

another offers no esitentiallv

construction of the etemetric

howtver, that since

ft

IIV - WI I =

new geometric idea. Figcire 4-10 illustrates the

veqtor representing V -.W. It is useful to note,

the length of the vector .V W equals the dista

P: (u, v) and T: (r, s).

tito

S.

a.

-T:(-r, -s)

Figure 4-20. The

-14/
ft

S.

S. -"
S.

I.

2
N

r) -+ (v

e between the points

v)

subtraction of vectors,

I.

'E.
4

t
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Exercises 4-4

1. Determine graphically the sum and differences of the following pairs of

vectors. Does order matter in constructing the sum? the difference?

, (a) [7: ;

(b)
[°31 [7f1

[71 L-231
(c)

(d)
[631 2 [1] ;

(e) [471 ;

(f) [-321 [01

2: Illustrate graphically the associative law:

(V + + U mg V + (W + U)

0. Compute each of the following graphically.:

I

(b)

(c)

7

[31

1-1
L72

[ 251

[
-

2]
1

+ F-i] +
* L 2

[ 121 [41]

,

1
'(d) Li] + [fl + [23] [ 5]

4. State the geometcic sighificance bf the following.equationsl

(a) V + W [6]

o

0

(b) V + W + U [60 ]

c ) + W + U +-T [o0 ]
-

0

. 5. Compleb.the proof of both parts of Theorem 4-4. .

igo

4

:75
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4-5.- The Inner,Product of Twa Vectors

177

Thus far in our development, we have investigated a geometrical interpre-

tation for the algebra.of vectors. We halie established a one-to-one correspond-

r
ence between the set of column vectors having two entries and the set of directed

line segments from the origin of a
\

coordinate plane. The algebraic operations

of addition of two Nectors and of multiplication of a vector by a number have

acquired geometrical significance.

But we can also reverse our point of view and see that the geoMetry of

vectors can lead us to the consideration of additional algebraic structure.

'or

For instance., if you look at the pair of.arrows drawn in Figure 4-11, yau.

Figure 4-11. Perpendicular vectors.

will very likely conment that they appear to be mutually perpendicular. You

5' have begun to. talk about the angle between the pair of arrows.

Let us suppose, in general, that the points P, with coordinates (a,b)., and

R, with coordinates (c,d), are the terminal points of two geometric vectolst

Consider the angle FOR, 'which we denote by .01e.Greek letter 0 (theta), "in the

triangle poR of Figure 4-12.

4

It is very easy to compute the cosine of 8 by applying the law of cosines

. to the triangle FOR. If 1OPI, MI, and 1PRI, are the.lengths of the sides .

4
of the triangle, then by the law of cosines we have

210P1 10R) cos 0 - 10P1
2

+:10R4
2
--1FRI

2
.
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a, b)

Figure 4-12. The angle between two vectors.

Bsp

Thus,

2
. ION v a + b

2
,

WM. = v/c2. + d2 ,

!PRI = -1/07-c + (b-d) .

2 2

2( a + b ) ( ) cos 0 = (a
2

+ b
2
) + (c + d

2 2
) ((a-c)

2
+ (b-d)

2'
1

Hence,

2(ac +

ICIFI IORI cos 9 = ac + bd. (1)

The number on thalright-hand sidfe of this equation, although clearly a function

of the two vectors, has not heretofore appeared explicitly. Let us give it a.
0

.name apd introduce,.thereby, a new binary operation for vectors.

Definition 4-2. The inner product of the Vectors

and [] , written
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is the algebraic sum of the products of corresponding entries. Symbolically,

[al [e] ac bd.
b d

We can similarly define the inner product of two row vectors: [a bl.fe

ac + bd.
0

Another name for the inner product of two vectors is the "dot product" of

the vectors. You notice that the inner product of a pair o'f.vectore is simply i

number. In.Chapter 1, you met the product of a row vector by a column vector:

say [! bi \Iiimes [] and found that
d

El id [ac bci]
sik

-

the product being a 1 X matrix. As you cai observe, these two kinds of products

are closely related; for, if V and W axe the respective vectors
Sb

we hive V
t

id and

VtW [ac + bd]4, ik
(1,

Later-we shall exploit this close connection between the two products in order

bir 11 Tel .

[4131]
and

0
to deduce the algebraic properties of the inner product from the known properties

4

of the matrAc pxodtict.

Using the.notion of the inner product and the fonmu1.a'(1)'obtained above,

we can.state another theorem. We shall speak of the cosine of the angle included/

. between two vectors, although we realize that we are actually referring to an

angle between the associated directed.line segments.
I

Theorem 4-5. The inner product of two vectors equals the prodgct of the .

lengths of the,vectors by the'coEiine of, their includeeIngle, Symbolitcally,

,

1.
10%
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V W 'a IIVII HWH cos 0,

where 0 is the angle between,the.vectors V and W.

'The theorem has been proved in the case in which V and W are not col--

linear vectors. If we agree to take the measure of the angle between two col

linear vectors to be 00 or 180° actording as the vectors have4W same
Mb

posite directions, the result still holds. Indeed, as you may recall,

or op

the law

of cosines on which the 1/urden of the proof rests lemains valid even when the

three vertices of the "triangle" FOR (Figures.4-13 and 4-14).

Figure 4-13. Colamear vectors
in the same direction.

Figure 4-14. Collinear vectors
in 4posite directions.

el,

as.)
Corollary.4-5-1. .The re1attOnship

holds for every vector V.

4,-The corollary follows at once froul Theorem 4-5 by taking V = W, in which

,

case 0 0
ol

To. be sure, the result also follows immediately from the facts

*

VV= HVH 2

that-, for
[a

any vector V m we have

ct
.S

v..

V V b while `IVH V-Ia2 + b2.2
,

<
.4
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We have examined a geometrical facet of thq inner product of two vectors,

but let us now look at some of its algebraic properties. Does it satisfy corn
\

mdtative, associative, or other algebraic laws you have met in studying number

systems?

It is easy'to show that the commutative law holds, that is,'

yew= W V.

. For if V and W 4re any pairs af 2 X 1 matiLices, a computatiorivhows that
7

Hence

Nq vt, wtv
,

,

V
t
W = [vw] , while W

t
V w .v] .

V W = W .

It is equally easy to show that the associative law cannot hold for inner

products. Indeed, the pcoducts V (W U) an4 (V .10 U arf meaningless. To.

evaluate 'V (W 1.1), for examplqp, you are,asked to find the inner product of

the vector V with the number W.U. But the inner product is defined for two

row vectors or two column vectors'and not for a vector and a number. Incidentally,

, you are cautioned not to confuse the-Product V(WU) 1th the meaningless
4

V (W .11). The former product has meaning, for it is the product of the vector

sb

V by the number WU.

In the exercises that follow, you,will be asked to consider some of the

other possible properties of the inner product. In particular, you.,w1,*1 be asked

.
to prove the following theorem, the first par,t of which was proved above.-

/

Theorem 4-6. 'If V, W, and U are column vectors of order 2, and r is

a real number, then,
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(a) V W = W V,

(b) (TV) W = r(V 141) ,

(c) V (W U) = V414 +

(d) V *V > 0; and

(e) if \ V = 0, then V =
[C]

Exercises 4-5

1. Compute the cosines of the angle determined by thd arrows re esenting the

two vectors in each of the following.pairs:

[-2.] 2]

[(d;1

[-3 [621 ;
'

*[31° '

(e)

(f)

(g)

5

(h)

c,

11 _121 ;
1

2

011 [011

, t .

[251 [251

2t1
[ t L2tti

.. In which cages, if any, are the arrows perpendicular? In which .cases, if

any, are the arrows collinear?

E
1

=
0

and E
2 '

Show bat, for evexy nonzero vector V,

V Et

I WI I
and

It'E
2

I IVI I

4
are the dilAection cosines of V.

3. (a) Prove that two vectors V lid W are collinear if and only if

yew =-- HVH HWI I.

I s'
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Explain the signilicance of the sign of the righthand side of this equation.

(b) . Prove that

(V W)2 < 1111112 I IVI 12

and write this inequality in terms of the eitriesof V and W.

(c) Show also that V W < I IV) I I WI 1.

4. TWo vectors V and W are daid to be orthogonal if the arrows representilg

\

V and W are perpendicular to each other.. The"zero vector is .satd to be

orthogonal to every vector. Prove that V and W are orthogonal if and

only if

V ti mr.C1 .

5. Fill in the blanks in the following statements so as to make the resulting

sentences true:

(a) e vectOrs
L241

and [41Th are collinearn

(b) The vectors. [13] and [] are orthogtonal.

LI-
,

(c) The vectqrs
. 0
[ and : 'are

) The vecto'rs [11 and
3

[T.4 'dre collinear.

(e) For every positive real number t, the vectors

2t
and [2] a're or-thogon'al.

(..0 For every negative real number t, the vectors

I.

[3tt2i and areorthogonal.

6, Verify that parts (a) (d) of Theorem 4.6 die true if,

1/4

td
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2 [-2
, and r = 4.

7. Prove Theorem 4-6

(a) by using the definition of the innee product of two vectors;

(b) by using the fact that the matrix product Vt* satisfies the

equation
A

V W = $I.w .

OW A

8 . Prove that 11 + W112 = (V + W)`' (V + W) I IVI 12 + 2 V W + I IWI 12
if

r

every pair of vectors V and W.

9. .Show4that, in each of the following sets of vectors, V and W are,

orthogonal, V and T are collinear, and 'T and W are orthogonal:

(a) V = T =

or

(b) V =
[231

T =
[21
141

W =
L321

Do the same relationships hold for the set

' 5 [2]

L-0

T =
[1]

y.O.
Let V be a nonzero vector. Suppoqe that W and V are orthogonal, while

,T and V are co].linear. Show that W and T are then otithogonal.

110,...

11. Show that, for every set of real numbers r, s, and t, the vectors

12. Let V = ul
vJ

[r.s].

and t are orthogonal.

41k.

, where V is not the aero vector. Show that if, 14 and V

are orthogonal, there exists a real number t such that

A



13. Show that the vectors V and W are orthogonal if and only if

Iv + Ilv = o.

14. Show that if A =
b

and B = , then-
,

2
I IA112 I 113I 12 (A B) (ad 1,02 .

0 15. Show that .the vectors V and W are orthogonal if and only if

os--1

e\

11 (V + W) (V4+ W) .* V V + W W.

16. Show that the equation

(V + W)'4*(V W) = V V W.W.
A

holds for all vece tors V and W

17. Show that
4
the inequality

e

IIV WII < IIVII +.11t4T-.
4

4 /
holds for all vectors V and W.

4-6. An Area and a Determinantk

185

.
i

Before leaving the basic properties of our geometrical interpretation for
. AS

vectori, let us look at one more bit dt4eometry. In Section 4-4, we saw that
,

, 0.

two noncollinear vectors determi e a parallelogram. That is, If

. (
.

A = [L and B =
[c]

'a ,

. 7

are two .noncollinear vectors, then'the points P(a, b), 0:(0,0), R:(c,d) and

S:(a + c, b +.'d) are the vertices of a parallelogram (Figure 4-45.) A reason
)

able question to ask,is: How can we determine the area of the parallelogram PORS?"

*.

,
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Figure 4-15. A parallelograM determindd by vectors.

As you recall, the area of a paralle/ogramtquals the product of therlengths.

of its base and its altitude; Thus, in Figure 4-16, the area of the paralieloL.

gram KLM1t is bill, where is the length Of side NM and h is the length'

'

of the altitude. Kn.

a.

-1

Figure 4-16. Determination of the area pt a prallelogram.

/Po

But if b is the length of side NK, and 0 is the measure of etttier'
.2

angl NKL or angle KNM, we have

h = b
2

!sin 01.

4

Hence, the'grea of the parallelogram bquals b
1
b Isin 01.

Returning tp Figure 4-15 and letting 0 be the angle between the vectors 0

A: and B, we car.) now say that if G is the area of paralle1ograma FORS, then
A



Now

2
1.2 IlAll 111311

2 2sinG O.,

sin2 0 1 - cos 2 0.

It follows from Theorem 4-6 that
AP

therefore,

Thus," we have
#.

4

e (A eB)
2

cos2

11A11
2-.11BH 2

,

11A1 1
2

11B11
2 (AvB)1 2

sin2

O.

2 2

2
, G2 IAIX? ON 7 (A .1)2.

.

# .

0

:

..1; .)

, A .

i ,l,
P

'It follows tfroM the result of...Exercise 14, of the preceding section that. IS

,
A / . - . . . .

A

A

A.

(187

* .

Therefore,

G2 = -,bc)
Ir

,

pl< +ad be .

Bu t ad be is the -,..Value of the determinant (D), *where D is _the

a c
matrix For easy reference, let us uil'ite our result in the form of 43

b d

theorem.

$

and

9heorem-.4-6 . The. area of the paralleloiram determined 'by the vectors
_

c a c
'equals 13(D) t, where D. . =. ,

. _

4
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e'
. Corollary 4-6-1. The vectors

[ a- [b
and

]
are collinear if and only

d

f.;8.(D) = Q.

1.
The argument proving the corollary is left as an exercise for the reader.

You notice that we have been led to the determinant of a 2 44:2 matrix in

examining a gedmetrical interpretation of vectors. The role of matrices in this

attdn Will be further investigated in Chapter 5.

-4.

a

ExerciSes- 4-6441

.4

1. Let OP- represent tbe vector A, and or the vector B. Deterdine the

1110:11:000;?..

area of triangle TOP if

(a) A = B =
1-1 ;

)

[71:4]

[1-21

-2

Eli
B [.-231

(c),A = ,

2. Compute the area of the triangle with vereices:

(a) (0,0), ,(1,3) iand (73,1)

(b) (0,0), (5,2),..and (1-10,-4);

(c) (1,0), (0,1), and (2:3);

(d)' (1:1)', (2)2), 'and (0,5);

(e) (1,2), (71,3), artd

,
, I.

4-7. The Interplay between Alg

:4

bra.and G metry;, Vector Analysis

In this chapter, 4we have eloped a geometrical representation--namely,

diredted line segments for' 2 X 1 matrices, or'column vectors. Guided by e

definition of,the algebraic operation of addition of vectors, we have found the

. \ t .

"parallelogram law of addition" of directed line segments. The multipliZation of

4
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a vector by a number $has been representedLioy the expansietifor contraction of the

correspondin directed line segment by a factor equal to the number, with the
A

sign of the ctor dete ining whether or not the direction of the'line segment -y

is reversed. Thus, from aTe t of algebraic elements we have produced a set of

geometric elements. Geometrical observations in turn led us back to additional

algebraic concepts.

This interplay between algebra and geometu, however, is tot merely/an tqter.,7

esting iniellectual exercise. The mathematics of directed line segments.to which,

our algebra has led us forms,tile beginnings of a discipline called 'aiector

analysis," which iS an important trl iltIclassEcal and modern -physics, as well

,

as in geamTy. The "free" vectors that you meet in physics and use to represent

forces, *velocities, and other concepts, are clbse relative& of our geometric
.,,

p.,

vectors, which are bound to the origin. The study in Which we are engaged, con
.

sequently,,is' of vital itilportande for physicists, engineeirs, and other applied

scientists, as well se for mathematicians..
I.

. .t
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Chapter 5

TRANSFORMATIONS OF T5E PLANE

5-1. Vector Spaces and Subspaces

You have discovered that one
*
of the most fundamental concepts in your

study of mathematics is the, notion of function. In geometry, the function con

cept appears in the idea o'f transformation. It is the aim of this chapter to

recall what-we mean by a function, to define geometric transformatiod, and to

explore the role of matrices in the study of a! significant class 9f theseotrans
.

formations.

Let us usethe symbol H for the !let of all real columnyectors,of circler

. .

2. .3pus, if/ R../ is the set of., real numbers we have

/i U E R- -and v

he set H together With the operations of addition of vectors and of ,

cation of a vector bi a real number is an example of a type of algebraicsystem,

called a vector space.

.

.1

Definition'5-1. Any set of elements is a vector -space over the set of

real numbers provided the following'conditions are satisfiea:

The sum of any two elements'of the set is also an element of the set.

The product o any e],pedent of the,set by a real number is also an

element of the set.

The laws I and II of Theorem 4-1 hold.

A simple example of a vector space Over the real numBers is the%iet of all -
,

linear.and constant polynomials with real coefficients, that is, the set

191 19f;
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i POO la ax 4-13, a e R and,b E R ,

4

where the addition is the Usual addition of polynomials.
4

Another vector space over R is the set of vectors collineam with

that is, the set

r 21[3 r 6 R} .

,

This vector space is contained in H. 'It is called a subspace of H in ac-
.

cordance with the fo0owing definition.

Vefinition 5-2. Any nonempty.subset .F of H. is'a.iubspAce of H provid-

ele(a).the sum of every pair of vectors of F is in F, and.(b) each produc,t

of a vecl:or in F with a real nuMber is in F.

You may wonder what subsets of H are subspaces; Fiist of all, to be a

k

subspime, a given, subset F must contain at least one vector, say V. FUtther-
.

mores F muSt also contain each of,the products rV for real numbers r; that

is, if 'V is not the zero vector 'then F must contain every vector collinear

-t
with V. In particular, the zero vector,

.

112 [9,]:

must belong to F.. Consepuently, the following theorem is true:

Theorem,5-1:' Each subspace F of H contains all, vectors eollinear with

any nonzero vector in F. In particular, ch subspace contains the nro vector.

It is easy to see thAt the set consisting only of the'tero vector is a

.subspace.. It is also,simple to verify that the set of all ve'etors collinear
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with any given nonzero veetor is a subspace. With a little more effort, you

can show that sub'sets of these two types are the only subspaces of H, other

than H itself.

Theorem 5-2. Every subspace of, H consists ofaxactly one of the follow-

trig: the zero vector; the et of vectors collinear with a given nonzero vector;

the space H itself.1

Proof. If F is a subspace containing only one vector, then

4 \\.

since'th9.0'6 vector belongs to.every subspace.

If F contains a nonzero vector V; then F contains all the vectors

F
{[001}

rV for real r.

follows tliat

Accordingly, if all vectors of F. are collinear with V, it
r,

F rV IrER}

But if .F contains a vector W not collinear with V,. we ithall now prove

that P is acivally equal to H.

41
Let the noncollinear vectors V and W in die subspace F be represented

by the goncollinear position vectors OP and OR, respectively. Let, Z be

any vector of H, and let Z S'e represented by OT. Since OP and OR are

not collinear, any line parallel .to one of them must intersect the line con-

-Or

taining, the other. Draw the lines through :X, parallel to OP and O, and

,e

,let S and Q be the points in which these-lines intersect the 1

)
es con-

,
.

.

. ,-. -. .

taining OR and OP, respectively; see Figure 5-1. Then

67i . C14'Q
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444

Figure.5-1. Representation.of an arbitrary
vector Z as a linear combination of a given
pair of noncollinear vectors V and W.

;
. .-... . .,--

But ,OQ is colliilear..with OP .and OS with OR. Therefore, real numbers a
i

and b. exiAt auch that

Hence,,

om.a.

OQ a0P , and 'OS bOR.' '

I aV + bW.

Since F is a subspace, At contains aV, b

..

d their sum, I. Thus, every

vector Z. of H must belong to F;,that is, it is a subset of F. But F is

given'to be a subset of H. Accordingly, F te H.

Equation (1) could have been derived by.a purely algebraic argument. You

will be asked to give that argument below, in Exercise 5-1-9.

Definition 5-3. If a vector I can be expressed in the'form aV + bW,

.

4here a and b are real numbers and V ,and W are vectors, then I is

called a linear combination of V and, W.

Thus, by Definitions 5-2 and 5-3, we have the.following result:

199



k.

195

Theorem 5-3. A subspace F contains everyiinear combination of each pair;

. of vectors in F.

.

Flether, in proving Theorem 5-2, we have incidentally established the use-

ful fact stated in the following theorem:

Theorem 5-4. Each vector of H can be expressed as a linear combination

of each pair oknoncollinearlVectors in R.

For example, to express

as a linear combination of

[]
v= and W =

" 3

3 4]

we must determine real numbers a and b such that

[1LJ051 m.a [3 + b
[11

['a
3a + 4b

Thus, we must solve the set of equations

5 = 3b,

.10 = 3a +.4b.
r-

4

t,

We readily find the unique solutio5 a = 2 and b = 1; that fs, we have

INO

ia

2V + W

,
4o,
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If you observe that-the given.vectors V and W in the foregoing example

are orthogodal, that is, V W = 0 (see Exercise 4-5-4 on page 183), then a
1/4

second method of-solutiin might occur to yOu. For, if

Z = aV bW,

'then for the produtts Z * V'1/4 and Z 0 W you hAve

-Hence,

thus,

ir

a 11V!
2

and Z W = b
2

.

,Z 0 V = 50, Z 0 W = IIVII
2
= 25$ and 111411

2
= 25.

50 = 25a and 25 = 25b;-
/

*

a = 2 and b = 1.

It is worth noting that.the representation of a vector Z as a linear

I.

46.

combination of two given noncollinear ;rectors is unique; that is, if the vectors

V and W are not collinear, then for each vector Z the coefficients a and

b can be chosen in,exactly one way (Exercise 5-1-14, 'belo0) so that

Z = eV- 47, bW.

The pair of noncollinear vectors V and W s called a basis for H, while

I
the ordered pair of real numbers, a and b, are called the coordinates Of Z

.

5
relative to that basis. In the eximple above, we found that the vecior

, tild
4 4]

].
.has coordinates 2 anfrirelative to the basis.Th [3 and

[1 : I.



Exerdises 5-1

/
2

1. Express each of the following 'vectors as linear, combinations dl
# Id

[3

]4
,

\ and and illustiate your answers graphically:

(a)
. 1

f

--(b) [i] ,

' [721

(c)
LO3]

197

2._ Determine the coordinates of each of the vectors in parts ('a) through (i)

,

of Exerctse 1 relative to the baqis
[7;.]

and .

4]

2 : 2

3. qxpress the vector
v

as a linear f the basiscombination o
,

. ..._.
eN

[0
this basis is called the natural hasig for R.

11

4. Prove that the following set is a subspace of, H:

4

of H.

f [231
r e

5. Prove that, for any given vector W, fhe set (rW r C R) is a subspitee

and

.1

6. ',P9ve that the set 01 poiynomials ax
2

+ bx + c, for real numbers a,

nd is a vector space over the real numbers. Find two distinct sub

spaces eff this vector.spa,ce.

7. For

v Vt

determine which of die following subsets of 4 are subspaces:
a

(a) all V with 'u =f0,

Oh) all V with v. equal to (e) all V with u + v = 2,

an integer,

(d) all- V with 2u v 0,
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(c) all if with u rational, (f) all V with uv =0.

8. Prove that F is a subspace of H if and only if F contains every

linear,combination of two vectors in F.

9. Give a purely algebraic proof of Theoren 5-2.

10. Show t'hat I
cannot be expressed as a linear combin

Li 6
and

-151 -

of the,t vector*

. 11. Deicribe the set of all linear combinations of two givewcollinear vectors.'

P
12. Let F

1
and F

2
be subspaces of H. Prove that the set F. of all vectors

belgeging to both El and F2 is also a subspace.

1

13. In proving. Theorem 5-2, we showed that if V and W are not

victors, thbn each vectOr of H can be expressed as a linear

collinear

combination

of V and W. Prove the converse: If each vector of H has a repre-
.

. sentatidn as a linear combl.nation of V and W, then. V and W are not

collinear.

14. Prove Wet if V and W are not collinear, then the representation of

any vector Z in the,form aV + bW is unique; that is, the coefficients

a and b can be thosen in eAactly one way.

15. Use Equation (1) on page 142 to show that any vector

"se

a

''can be-expressed-uniquely* a linear c'ombi-fiation of, the basis vectors

3

2

:21)

4

and

[-41.
5



5-2. Functions and Geometiic Transformations
/ ?

0t6i1 recall that a funCIion fram a set A taa set' B',is a correspondence
4

199

$ .'... .,

beteen the ile0eqa o sets such diat with eadl element of' A' there is

associated e tly ones.el,ement of B. The'set A p the domain of the function
.

t
41,

andthe:set 13. is the range'of the functipn. In your previous-work :the func

tions.you..met g4neta11y had sets of 'real numbers both for4domain and 'for range.

Thus'the function,symbolized in'the form
t

A.

is likely to be interpreted as associating the real number, x
2

with the non
.

-
negative rear number x. Here you have a simpke example of a "real function"

of a real variable."

In Chapter 4; however, you met a function V -->. 114/11 having for

domain /the vector space H, and for its range the set of nonnegative. real
_

.

. numbers. In the present chapter, we shall consider functions that have tbpir

range as well as their domain in H. Specificall, we want to find a geometric

interpretation fon these "vector functions" of a "vector vare4le"; this is a'

sontinuatie3n of the discussion started on paie,127.

Such a vector functie wiil associate, with ,the point P having coordinates

(x,y), a point 1°-: 'with,coordinates ('X',y'). In more vividdrometric language,

we would 'say,that ale function maps the point P onto the point Or We may;

say that it,maps the geometric vector OP onto the geieric vector OP The /,

function can, therefore; be viewed as a ocess for "transforMing ' or mapping

the plane into itself; that is to say, 'it is.a prdcess that, associates with each
n

point P of the plane some point this plane. We shall call this process

a transfomation of the plane'into tself or a geometric transformation. As a

tor

matter of fact, these'transformatio s are ofteh called "point trarisformations"

in contrast to,more general mappings in which a point may be carried into a



200
4

V 4
4

'.',.1.,1.ney a circle; ar some 60Ar'geometric configuration. Far us, then; a geometric.
. . .

r . 4* P", 4 ` .

transt tibn iS 4 hel l,Means, Of visualiiing a.veetor function ofa vector
.- . ..s 4 ,

& , , : ,i o . J

variabie. ..lis a-makter of conVenient terminology, we shallkcal the vector that. ,
. .r .

.

.

. . s ..,,
. ,_

such-a functiou associa_tes'with a given v4t6r V, the image 'Of .V; furthermore,

.
..

say that 'the functibn m4s V ont o* its -image ..
.

Letus look at ,the simple functi4On
. .. .; .\.

. , -
:

, .

,- : V41- 7-4 2V,, V e-

vs,
This function Maps each vector ,AT onto the vector thathas.the same direction

. -- ,,.
'

as V, b t is twice as.langeas V. 'Aribthér.way of assertinr,this is to
. .

. . .
1

.

say that the function assbciates.with each point P .of the plane a'point P'

.
.., . .;or

such that *P and P' lie oh the same ray through°the origin, but 115'Il =

tilaill;
. .

see Figure 5-2.- You may therefore think oi the function in this ex-

ampie-as uniformly stretching the.plane by a factor 2 in all directions from

the origin. (Under this mapping what is the point onto which the orig
0. 4.

mapped?)

As a second example, consider the function

-

This time, each vector
.

is mapped onto the vector having length qual and
,, *

, . .

.
2. Ctransformation,

-
direction o posite-to that of the given vector. Viewed as a

3:the function associates with any point P its "reflection" n the origin; see

Figure 5-3.

The function

V ---> 2V

combines both.of the effects of the preceding fuilctions, so'that the vector .

.

associtated with V is twice as long as V, but has the oppbsite direction to

p.

4

4

Ob.



.that ol V.

-

1

is

4

t
201,

Figure 5-2. Thettrans-
formation V ---> 2V. t

Now, let us..:look

A

-

nctiop
4,'"k

. F. .

'Figure 5-3., The transr-
formation V --7-> V.

IIVII,V.

4
As.in our first example, each.Vec or is mapped by the function onto a vector

having the same direction as tfiven vector,. Indeed, every vector, of length
Jr

1 is its'own image. But, if, IIV > 1, then the image of V has a length

greater.than that of V; with ,expansion factor increasing with the length

of V itself. Thus, theclvector

having length 2, is mapped onto

which is twice as long. The vector

I.

Lo]

4

si

ti 4 .
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[1251

,

4 .

whose length is 13, has 'the rMage, .04

111 [ 65

156] '

ft

. -

with.length 1.69. On the other hStd,-for nonzero viptors of kength.less than

4 '
-..../ one, we obtain'irike vectors of shdrtirIlingth, the contractioh factor'decreas- .

,

J

. . , ling with decreading length of the original veetar.-ain
,

s,
. -

, .

.
, ,

, .
,,

444 444

is mapped onto

1

7+:

0

the Image being half as long. as the given vector.. Agaib, the vector

is mapped 'onto

20-
49

15
_ 49_

the length of the first vector being 5/7, while the length of its image-is only

(5/7)2, or 25/49. Although we may try to think of this-limapping as a kind' of_

l_ilc.1.t

stretching of the plane.in all directions'
f

m, the origin, so that ahy point

,

and its image are collinear with kl.e origin, th. mental pictnre has also.to

take into account the fact that the degree of expansion varies with the distance

of a given point from the origin, and -that for points within the circle of radius

1 about the origin the so-called stretching is actually a compresion.

4
The mapping

V (VA.- U), where U = ,

2 .

1 2

can be Written in the form

t #

L

a.
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Therefore, if you: remember the formulas for the coordinates of a linear segment

.

,.

.

:,.

in. terms of-the coordinates ofthe endpoints of.the segment,. yot
Lp.cognize.that.

.

this f4nction maps each 'point P on&i.the m4dPointiOf thp line
segment i?)inilhg

i

i)
e

. .,,P to the point (2,1)E. One way of vOsualizing this mapptngfi to' regard it.a$
-

displacing or tratslAting..the
plane in the diiection of the vector U through'

-z,

a distance equal to the length of U' and then compressing the plane by thefactol 1/2; see-Figure 5-4.

I.

4.

Figure 5-4.* The
trangIormation

.- .

i

7 21]

A. i

V ."".>
V til

-.0

.,,

where U

[..f.'`

,

44

t 4.0 P )1.

,

Allr
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Still another example oi e _vector
'function on H is the t ansformation

Undei thi.s
mapping,,each p

[zr [x + 2y]

LJ
--->

,..
Y

.

t is moved paralWlto the x axis th.
rough h.

lk '.
,

.

4

. ,

,

Aistance equal to twice,thtordinate
rlf thè.point.

The result is s horizontal
,

-

shearing o'f eft'e plan
('Figu e 51), with points above the "x axis beifig -moved

to.the right end points below thdt axis iuovçVto tye left.

A

Figur 5-5. The trans forthation
_x] [x +

All t vector functions discussed above map distinct points of the plane

onto di inct points.
But we can certainly produce functions nbt having this

//

'prop 'ty. Thus, the function

.

maps every point of the'plane onto the origin.

On the other hand, the transformation

V = [ xl --->

^

c.

maps,the point (x, y) onto the point of the x axis that has the same first

r )

(2)
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component as For example, every point of the line--x S is mapped onto the

7

point (3,0). ,Since the image of'eah point P. can be located by drawing a
k

perpendictilar line m .P to the x axis, we may think of P' as being carried

'or projected on the x axis by a line perpendicular to thls axis. Consequently,

this mapping may be described as a perpendiculai or othogonal,projection,of the
t .

p1ane on the x, axis. You notice that these last two functions (1) and (2) map

H onto subspacesof H. .

Since we have met examples of transformations that map distincepoints Onto

distinct points and have also seeefi'trans5ormations ufider.which distinct pointS

may have the same image, It is use-full to define a new term to distinguish be-
.

tween these two Rinds of vector functions.,

Definition -5-4. A transformation from the set' H onto the set H is one-

to-one proviIed the images of distinct vectors are also distinct vectors.

(:.

Thus, if 1 is ap.function from H. to H and if we write f(V) for the

image of V, under the transformation then Definition 5-4 can be formulated

symbolically as follows: The function f is a one-to-one transformation on Hit

,27fided

V U

imilies

.f(V) f(U)

for vectori V and U i H.

Exercises 5-2

1. Find the image of the vector V under the mapping

:4V --> 3V

+.1
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9

for each of the following values of V%

(a)
[51] ' CP) [0 P

0] '

k

.[ 2
Or) (d) ,

2. Find 'f(V) undek' the mapping .

foiLeash of the following valuei of

(e) #1

(b)
[i]

II0 2
(d)

1] (0 -2 0]

DescribeAthe geometric effect of each of the following transformationa of

H on the vector

(a) V ----> V,

(b) V -->

(c) V aV,

(d) V ---->
,

(e) V ---y

o

0
[

aV,

()),

V = .[Y]

,

a .> 0,

a >. 0,

,'

(h)

(i)

,..

(j)

(k)

(1)

[(f) V > yy ,

(g) V [> -; ,

(n)

V --:-> Ly ,

I

V >

V -->

[

[3Y]

Ic

]Y '

4.

x +
V

V -->

(n) N.r-> y 3xj

. 4. Determine which of the transformations in the preceding exercise are one-

to-one.

.1 ..

5. finc expressions of the type IT-7. V' for the transformations of H that k

$

totieach point P onto the" point P' related to P in the ways described
\

. .

belci
0 ,

,

A.. I IT ,
:II.

.:
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(a) F' is one unit to the right of*.P and four units above P; .

(b) P' is the peipadicu/ar projectioh of ,P oh the horizontal /ine

, through.(3,2); .,. .

t

.

., .
.

(c)" P'ys the pirpendicular,projection of 11? on pie vertical ant

through (-1,-2);
,.

N
t. (d) OP and OP' are collinear ileut opposite in direction, -and 1101"t1 =

. , . .

. -. \ ._..

1 ilaiiil.
.

. 2 ,..
' !

. .

At (e) P' is the intersection.of the horizilpfit.line..tloough
,

P with tieA

,

line. of. sidOe -1 passing througli the origin (horizontal iprojectiton on
1..

the line ir it - x);
.

..-
. ''

.

.......... Y
.

.

. ,

(f) P' _is the intersection of the vertical line through r with the line
-._

y 4 2x (vertical projection on the line y m 2x).

6., Shdy that the.mapping of H into.itself thdt sends each point P into the

point of intersection of the line Sr = x with the line throUgh P having

slope 2 ii given by

-
2x - y

A

7. (a) Show that the mapping'

[xi x + 2y

can be expressed in the form
.

2
V [ 3] V.

(b) Find the image under this transformation of
[

.

(c) Find the image under this transformation of the subspace of vectors

collinear with
[t]

8. Solve parts (b) and (c) of Exercise 7 when
[11]

is replaced by

(a)
[21]''

(c)
[-1]

1

(b)
[3.3] '

(d) [. 2] .

1 ; )
4... - 4.
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9. Under the 14cmsformation given in Exercise-75, find by two

the image of each of 4:0 following vectors:

(a)..

(b)

(c).

[42]

[1

2]
13.

2
2

[1]

-[f.]
- ,

[fl

'

;h.

[3

1

[1] '

Consider the mapping

[ YX]* /L-1 1

1

1 [Y1
. 1 1 X

.(a) Find the imzges under this mapping of the pair

(1,-2)1 and show that the distance.between the given pair of points

'4!

\

fferent methpds

*4

of points (5,1) and

equals the distance'between their images.

(b)' Solve part (a) 'if the gtven points are (-2,10) and (6,-5).

(c) Solve part (a) if the given points are (a,b) and (c,d).

5-3. Hatrtx Transformations

As noted earlier, especially in Chapter 3, the pair of equations

can be written in the form

where

.1!

all x al2 131'

a21 x a22 1)2'

all al2

a
21

a
22

AV = B,

V , and B =

^
b
1

b2

Consequently, in solving the equations you actually determine all the vectors V
*to.

that are mapped onto the particular'vector B by the function

2/ r)
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( (1).

The study of the solutl.on of-systems of linearlequations thus ledds to.the

consideration of the special class of trailformabions On H that are expressible

in the form (1), wheTe. A -is any 2 X 2 matrix.with uéal'entri A. These matrix

transformations constitute a very important clash of nizippings, hvingextenive

m444. r

applications in auqhematics, statistics, physics, 2apperations research, and

engilleering.

An important property of matrix transformations is that *they'are linear
. ,

mappings; that is, they preserve vector sums and the products of vectors with

real numbers.

Let us formulate these ideas explicitly.

Definition 5-5. A.linear transformation.on H is-a function .from H

into H such that

(a) for every pair of vectors V and U in H, we have

f(V 4.,11) = f(V) + f(U);

(b) for_every real number r and every vector. V in H, we have

p.

= r f(V).

Theorem 5-5. Every matrix transformation is lirtear.

Proof. Let f be the transformation
ImeolawIlimOn

f : V --> AV,
4'

f

k O.

A

where A is any real matrix of order 2. We must show that for any vectors V

and U, we have

A
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0.

4 Ili:A(V U) .g.AV -F AU;

farther, we.must show that for any vector -V and any rat number ewe have

.

*rV) r(AV).

But these qualities hold iwvirtue of parts, III (a) and III (f) of Theorem 4-24V

.

(see.page 160).

7
T4e.)4nearity property of matrix transformatians can'bd,used to derive the

fklowing result concernigg transformatiiins of the subspaces-of H.

trt

eb

-

Theorem 54-6. A matrix A,:mapscevery subspace F .of, II 'onto a subspace

of H.

Proof. Let F' 'denote the set of vectors

[AU 1 U e F).

To pkove that F'. is a subspace pf H, we must show/that the following state-

ments ae true:

v. (a) For any pair of vectors P', Q' in F', the sum P' Q' is

in F'.

NFor any vector P' in F' and any real number ri. rP' is in

F'.

If P' .a4d Q' are in V4
( '

then they must be the images of vectors P

and Q in F; 'that is,

It follows that

Pl "I AP,

Q' gg AQ.

A

+ Q' agi AP + AQ gig A(P (4)

tat



and P' + Q' is the image of the vector .P Q in F.0(Can you.tell why
-

P 47 Q is in F?) Hence, (PI
4

Old hence rP!

Thus, rP' is

+ Q1) e F'. Similarly,

a

rP' mIr(
1

=

is the image of-srP.

theAmage of a vector

--
%

1;4 .

.But- rP eli. .ecause F is,a
NV;

subspace.
,

in V therefoye, rP' e F'.

211

Corollary 5 6- 1. Every matrix maps thh plane H onto a subspace, ,fither

the origin, or a straight line rough the origin, or H itself.

For ex4mple, to determine the subspaces onto which
. ,

maps

F

[2 1],A mg

4 2

(b), H itself,

we proceed as

For (a),

Hence,

follows.

the vectors of F are of the form

Au =
[42 21]

Thus,. F is

iso

X
13]

mapped onto F'

F'

= x 1] x e R.

4 2]x
2 ].

1]
x -2 I1

the set of vectors collinear with

'T[x] I

y x .

Y I
2

2. t

if

that

0 .



- ...,.... 1 " ti, e e

-4
,. ,

. , _--/ ,g12' ,.
.

$ - 1,,41or

-,:"--. /
.

In oih rds,..,A. maps-thélinfpassi4-through

.-

thmlinethrolekthe.-migin with-qlop1,412.
r -

,1 : ',P
e -",

As regards (b),- we notje that for any vector . 4
A ,. ' : ..4:3,... *

.1 *

'N .

V 21 ;A

4

A

the orlginAthllope

\ 1.

l'?"r

),
, 4

.'Im

? 4 t
4 I.

t

. , 4

we',ha.,la
.

- ,_r'4,
V a

C i
,

0

4

2] ItIg: 41X + 21 '
?.-= - ..

f *R4 (2x +HO.
,

[
. ,' -

) ...- '''

[1
AV = 11.!

.... 1_
,

( . A

Since 2x 4-y assumes U11 real vallu6s as x an4 9...run over the set of real

)

. f

numbers, i.t,follows thdt H is also mapped onto'. p';' 'that is,, A maps the

entire plane onto the)line

\ \

41s

onto

1. Let A: =
[1. 21
4 3

(4) V =
[211

(b)
L-231 '

(c) V
[201

1
'.3r x.

2 .

A

Exercises 5.3

/

For eaeh of thejollowing values of tliezector V,

determine:

(i) the vector into which _A maps V,.

(ii) the line onto which A maps,the,line cdn'taining V.

2. A certain matrix maps

[21]
into , and into

[21] [5

Using chis infowation, determine'the vector into which th matrix maps
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each of the following:

(a) ,.[331 (Hint: *'

IA

3. pons icier the following

F
1 =47

F3 =

su6spaces of

MI
2x j.

t[yx] I = 2x

F4f H itsèlf. Ii

Determine the subspaces onto which Fl, F
2*

F
3*

and F
4

are mapped by each
.

of the following iatrices:

-2(a) A =
[2 I

4. Let A = [1 1]
0

(a) .Calculate AV for

V =

(b) B = [ 0 1

2 31

F-11 -0] [-11
L 1 1 1 [0] Li]

_(b) Find the vector V for which

0
AV = [I] , [1] ,

0 ta s

(c) AB, (d) BA.

5. Determine which of the ,following transformations of H are linear, and

justify ?Tour answer:

x Ex +.11(a) V =
]

---->

f

(d, f211
5y
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6..

(b), V --=-> [xi]

x y

matrix

1
V

[]
(e) (V 4.U), where U

2

(c) V

Show that the

(f) V 1/VII V.

ari limps the plane'onto the origin if and Only if

.44

7. ,Show tat the matrix A maps every'vector of the plane onto, itself if and

only if

8. Show that

4.

'11,1)4

0 1

the line y 1, 0 ontokitself. Is any point elf that line mapped onto

itself by thid.matrix?
es.
IX*

9. (a) Show that each of the matrices

[1 01
and

0 0

maps H onto the, x axis.

(b) lb.dtermine the set of all matrices that map. H 'onto the x Axis.

(Hint: Youpust detv-mine all possible matrices A such,J.hat

responding to each V e H tht ore id a real number r r wytkch

AV r

41r--

(1)

In particular, .(1) must held for suitable r when V .is rolliaced by

. 6 and 14:«y °I .) .

)

.

10. Determine the set of all matrices that map R onto the .y, axis.

114. .31

11:. (a) Determine the matrix uch that .

v
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. for all

(h) 'The mapping

215

'multiplies the lengths of all vectors without changing their directions. It
I.

:amounts to a change of scale. The.number a is accordiftly called a scale

factor or scalar. Find the Matrix A that yields only a change of sscale:

AV gm aV.

12. Prove.that for every matrix A the set . F of all vectors U for which

v .
AU IN

ise subspace o H. This subspace is callea the kernel of the mapping.

13. (a) Show that the matrix of a transformation is determined when the images

of 2 noncollinear vectors are Oxen.-

(h) Find.the matrix that maPs

[1
onto [ and [1

0 2
onto [ 25 I

14. 13rove that if a linear transformation of H maps each of 2 noncollinear

vectors onto itself, then the transformatioh maps every vector onto itsaf;

- that is, the transformation is the identity'mapping.

15. 'Prove that a transformation f of R into itself is linear if and only if

. f(rV sU) = r f(V) f(U)

for every pair of vectors V and U of H and every pair of real nuOers

r and s.

5-4. Linear IranSformations

4,
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In the preceding section, we proved that every matrix reimesents a linear

transformation of -4Linto H. We now prove the converse: 'Eveivlinear trans-

formation pf H into H can be represented by a matriX.

Theorem 5-7. Let f be a linear transformation of H into H. Then,

relative to any given basis for H, there exists one and only one matrix-A

such that, for all \''VF E H,

Proof. We prove first that cannot be more than one matrix represent-

ing f. Suppose elat there are two matrices A and B such that, for all

V e H,

Then

for each V. Hence,

AV f(V) and JV = f(V).

a.

AV - BV = f(V) f(V)

r0
(A B)V for all V c H.

0

'Thus, A B maps every vector onto the.origin, It follows (Exercise 5-3-6)

that A B is the zero matrix; therefore,

A B.

Hence, there is at most one matrix representation 91 f.

Next, we show how find th matrix represpntation for the linear,transfor-

mation f. Let S 4nd S2 be a pair of noncollinear vectors of H. Let



a
11

a21
and f(S )

12

a
22

-be the respective images of S
1

,and S under he mapping
.2

.vector of H, it fopows fram Theorem 5-4 that there exist re1 numbers v
1

.such -=. v
1
S
1
+v2S2.

,

and v
.2

.have

Accordirlily,

f(V)*=. f(v1S1

+v
2

Since f is a.linea transformation we

a
12

`.

v-1 f-(
2
f(S

2
).

11 al2
a
21-

a
22

[allvl 4. a12v2
a21v1 + a22v2

v

It follows that If is rep sented by the matrix,

A
a
1 Y

a
12

a
21

a
22

when vectora_axe pressed in terms of their coordinates relative to the basis

Sl, S2'

You notice that the Matrix A is completely determirked by the effecof f

on the pair of noncollinear vectors used as the basis for H. Thus, once you

khow that a given translormat4en on H is linear, you have a matrix represent-

ing the'mapping when you have thq images of the natural basis vectors,

[161 and [ol]

222
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For example, it can be shown by a geometric argument that the counterclock-

wise rotation of the plane through an angle of 300 about the origin is e linear

txansformation. This fiinction maps any point P onto the point P', 'where the

meagure of the angle POP' is equal to 300 (Figure 5-6). It is easy to see

(Figure 5-7) that

Figure 5-6. A ri,tation through

an angle of 30° abOlit the origin.

Ii
Lo

and

,Figure 5-7. The inages oU the points

:(10) and (0,1).under a rotation of 30°

about the origin.),

:112apped onto

is mapped onto

Thus, the matrix representing this rotation is

A

[cos 360 -sin 30°

sin 30
0

cos 30
0

Note-that the first column of

=

[-sin 300]
cos 30°

= 1
A is the vectox onto which 0

[
is mapped;

2:?21
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[
the second colum thn of A is e image of ol ..

.. The product or Composition ofto transformations is defined just as you
.

. .

define tie composition of two real funetiofis of,a real variable.

,Definition 5-6# If f. and g are transformations on H, then for each

vector ,V in H the compoaition transformations fg and gf are the trane7

formations such that

fg(V) = f(g(V)) and gf(V) = ggf(V)).

(,_

Thus, to find the tmage of V under the transformation fg, you first

apply g, and then apply f. Consequently, if g maps V onto U, and if

f maps U onto ,W, then fg. maps V Onto W.

The following theorem is readily proved (Exercise 5-4-7).

Theorem If f-lek a linear transformation represented by the matrix

A, and g is a linear transformation represented by the matrix B, then fg

and gf are both linear transformations; _fg is represented by' AB, while gf

is represented 1:).r BA.

#For exampre, suppose that in the coordinate plane each position vector is

first'reflected in the vertical axis, and then the restating iiector is doubled

in length. Let us find a matrix representation of the resulting linear trane-

formation on H. If g is the mapping that transforms each vector into its

reflection in the vertical axis, then we have

'If f maps each vector into twice the vector, then we have

224
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f : [31 ;--> 2 [x]

Accordingly, the matrix representi

* ,

; 'Iliatrices representing the mappings.

[2
0

0]
2

Vs,` \ .

[-1.' 93-N.
0 .1

r2
0

0
2]

Exercises 5-4

how that each of the mappings in Exercise5-2-3 is 14near, by determintng
1

2. Consider the linear transformations,

reflection in the horizontal axis,

q., horizontal projection on the line y = x (Exercise 5-2-6e),

,

r: rotation couhterclockwise through 900 ,

s: shear mqving each point vertically through a distance equal to

the abscissa of the point,
.i;

of H into H. In eachtof the followings determine the matril&representing

the given* transformation:

(a) 13,

(b) q,

(c) r,

(d) s,

(e) pq,

(f) qp,

(g) Pr,

\
er

V

(k) s(rs),

(1.) (Sr)s,

(m) p(sq),

(n) (ps)q,

(o) (sp)(rq).

3. Let f be the rotation of the plane countercpckwise through 450 about the

origin,fand let g be the rotation clockwise through 30
o

. Determine a

matrix representing the rotation through 15° about the' origin.

41

4. (a) Show that every linear.transformation maps the origin onto itself. .

4.*
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(b) Show that every linear transformation maps every subspace of H onto

a subspace Of' R.

5 For every two linear transformations f and, g on H, define f + g to

be the transformation such that, for each V e H,

g)(V) = f(V) + g(V).

Without using matrices, prove that f + g is a linear transformation on H.

,

6. For each linear transformation f on H and each real number a, define

'af to be the transformation such that

A af(V) = f(aV).

Without using matrices, prove that af is a livear transformation,on H.

7. Prove Theorem 5-8.

8. 4thout using matrices, prove each Of the following:

(a) f(g + h) = fg + fh,

(b) (f +g)h = fh +gh,

(c) f(a) = a(fg),

e,

where f, g, and h are any linear transformations on H and a is any

real nuMber.

5-5. One-to-one Linear Transformations

The reflection of the plane in the x axis clearly maps distinct points

onto distinct points; thus, the reflection is a one-to-one linear transforma-

tion on H. 'Nbreover, the reflection maps any pair of noncollinear vectors onto

a pair of noncollinear vectors. It is easy to show that, this property is common

to.all one-to-one linear transformations of H into itself.
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Theoren 5-9.- Every one-to-one linear traniformation op H maps non-

collinear vectors onto noncollinear vectors.

Proof. Let S
1

and S
2

'be a pair of noncollinear vectors and let

f(S1) al T1 and f(S2)

be their images under the one-to-one linear mapping f. Since f is one-to-
,

one, we know that. Tl and T2 are not both the:zero vector. We may'suppove;

'therefore, that TI is not the zero vector. To she that T1 and T2 are

not Collinear,we shaftsigmonstrate thatthe assumption that they are collinear

leads, ta a contradiction.

If T
1

and T
2

are collinear, then there exiats a real number r such

that T = r T
1.

Now, consider the image under. f of the vector r S Sinca
.2 gt 1.. .

f is linear, we have

f(r S1) r f(S1)

= r T
1

= T2.

Thus, each of the vectors r S1 and S2 1..s mapped ontO T2. Since is one-
.

_

'to-one, it follows that'.

r S
1
. S

2'

and therefore that S
1

and S
2

are collinear-vectors. But this contradicts

the,fact that S
1

and S
2

are,not collinear. Hence, the assumption that T
1

and T
2

are collinear must be false. Consequently,

vectors onto noncollinear 'vectors.

must map noncollinear

Corollary 5-9-1. The subspace onto which a one-to-one linear transformation

maps H is H itgelf.
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Proof. Since the subspace contains a pair of noncollinear vectors, the
.

4

corollary follows by use of Theorems 5-3 and 5-4.

The' link between one-to-one transformations/on II and second-order

matrices having inverses is giVen in the next/theorem.

Theorem 5-10. Let f be a linear transformation represented by the matrig
Im

A. Then f is one-to-one if and only if A has an inverse.

Pilaf. Suppose that A has a inverse% 'Let S
1

and S
2

be vectors in

H having the same image under f.

"Oh f(S1) = ASI d f(S2) AS25.

de, ,

*

"Ta-s

Thus,

Hence,

and

AS
1

47
1(
AS ) =

1(
AS 2),

-
(A-

1
A)S

1
= (A 1A)S

2'

IS
1

= TS
2' re

fri

Thus, f must be a orie-to-one transformation.

On thebther hand, suppose that f is one-to-one. Frain Theorem 5-9, it

follows that every vector in H is the image of some vector in H. In partiCulari

there are vectors' W and U such that

f(W) AW = [1]
0

c),-),

5--

r".
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and

-

0

Accordingly, the matrbthaving for its first 64umn the vector W, and for its

second column the vector ii, is the inverse

Corollary 5-10-1. -A linear transformation reOesented by the matrix A

*.

is one-to-one if and only if

8(A) # 0.

The theoiy of systems of two linear'equations in two variables:can now be

studied geometrically. Writing the system

all x a3,2

,where

A

= -

a21 x +a22

AV = U,

'14t

all

a2i a22
V = ] and U

(1)

)

we seek the vectors V that are mapped by the matrix A onto ihe vector U.

If 8(A) # 0, we now know that A represents a one-to-one mapping'of H

onto H. Therefore, A maps exactly onewector V onto U, namely', V. = A 115.

Thus, the system (1) 9z, equivalently, (2) has exactlir one scaution.

'If 8(A) 0,.then, in virtUe of Corollary 4-6-1, the columns of A must
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be collinear vectors. (Hence, A must have one (4rthe forms

0

0

01
0

[
a

I)]
2 or

a

b

ra

rb

where not both a and b are zero. If A has the first of these forms, then

A

A maps H onto the orig.in. In the:other two canes, A maps: H onto the ,..,

a
line of vectors collinear with the vector

[

.. (See Exercise 5-5-7, below.)
A

7.

With these results in mind, you-may now complete the discussion of the solution

of Equlation (2).

Exercises 5-5

,

1. Using Theorem 5-10 or its -0Orollary, determine which of the transformations

in Exercise 5-2-3 are one-to-one.
4

2. Slpw thatsa linear transformation is one-to-one if and only if the-kernel of

the mapping consists only of the zero vector. (See Exercise 5-3-12.)

3. (a) Show that if f is'a,Alne-to-one linear transformation on H, then

there exisit a linear transformation g such that, for all V c H7.

gf(V) = V

land e

fg(V) = V.

The transformation g is called the inverse of f and is usually wri en

g = f.
-1

.

(b) Show that the transformation

transformation on U.

,

in Part (a) is a one-to-one

4. Prove that the set of one-to-one linear transformations on H is a group-
-

relative to the operation of composition of transformations.

,

nai:) fa
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, 5. Prove that if f and g are one-to-one linear transformations of H, 'then

fg is also a one2-to-one transformation of H.
_

6. Show that if f. and g are linear transformations of H such that fg

is a one-to-one transformation, then.both f and g are one-to-one trans-

formations.

7. (a) Show that if 5(A) = 0, then the matrix A. maps H onto .a point

(the origin) or onto a line.

(b) w.that if A is the 'zero matrix and U is the zero vector, then

every vector V of H is a.solution of the equatiOn AV = U.

(c) Show that if. NA) n 0, but A is not the zero matrix, then the'

,.solution set of the equation

AV [°]
0

is a set of collinear vectors.

(d) Show-that if 5(A) = 0, but A is not the zero matrix and U is not

the zero vector, then the solution set of the eqiiation

AV = U

-either is empty or consists of all vectors of the form

$

al

(V
1

tV
2

1 t e R

where V and V
2

are fixed vectors such that

[01
AV = U and AV

2
=

0

9

8. Show that if the equation AV = U has more than one solution for any given

U then A does not have an inverse.

9.



5-6. Invariant Subspaces

The reflection in the x axis,

'-

f : V [0 -]1 "
0

a.

Clt

227

evidently has the property of mapping each vector (point) on the x axis onto

4144041itself. If*you think of a mapping as "carrying" vectOr onto its image, you

mighi,think `of the vectors on the x axis as b ng held fixed in this reflection:

The notion of fixed vectors or points is important enough for us to formalize the.

idea in a definition.

Definition 5-7. If d transformation of R into itself maps a given vector

ontoatself, then that'vector is a fixed vector for the transformation. A fixed
.

-vector is also called an invariant vector. .

.

_

.A. .

Reflection in the x axis leaves fixed no 'points other than those on this
..,,

,

. e,- '
, .

I- gxis. However, it is easy to see that each point on the y axis is mapped by
,c

this transformation onto another point of the y akis, except for the origin.

If W is any vector on the y axis, W 0 0, then

.f(W)

t

-110, Thus, the vectors collinear with W form a fixed, or invariant, subspace of H

for this transform4tion.

..0.1111

Definition 5-8. A subspace F, of H is an invariant subspace for a

given trdpsformation provided: (a) the.image of every vector in F is also

a vector in F, and (b).every vector in F is the image of some vector in* F. ,

The following theorem shows the connection between invatianp vectors and
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invariant su6spaces under linear transformations.

f,

Theorem 5-11. If W is-an invariant,vector for a lirear transformation,

then every vector in the subspace F. = 1 r 11.) is invariant under the

transformation; that iss P is an invariant subspace.

10

* Proof. Since f is a linear transTommation that maps

have

f(rW) =.rf(W)

= rW.

Thus, f maps rW onto itself.for. every real value of r.

onto itself, we

To determine the invariant subspaces of a linear transformation f, let

us suppose that f is represented by likhe matrix A. We seek vectOrs W and
4.

real numbeA c such that

AW =

If I is the identity matrix of order 2, we then-have

that is,

or t.

Letting

et}

A

a

AW =

AWH7

cI)W =

ke a
11 12

a
21

a
22

[C91 '

[o,1

and W=

tc)3,3

'

s,

'
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we may Tewrite equation (1) as follows:

a c a
I. 12

-412 1 a22

We knoWthere is t nonzero vector W

low

that is,

or

c

0

0
.(2)

satisfying equations (2) if and only if

8(A cI) = 0,

. .

1\
t,

(all c)(4A4
12

a
2%%4.124

%\`\\,1;

c
2

(a
OvIr'

a

&(A) = O. (3)

Equation (3) is called the char ic equation of 'the matrix* 4 and its

,

,

. A -

roots. are"called the characterist Iues or.roots of- A. Once this quAdratic-

0, ';;"

equation is solved for .c , the c ' pondink- vectors Wsatisfying equation,(2).

are readily found.
.

(Exercise 5 7:gi
.

.

14 ip i''

You'ihould notice:that:inv4446t 'vectors of A correspond, to a character

a

istic root equal to 1.

, For example, to determine the invariant subspaces of the matrix
I.

A = [2 3]
0 1

we must solve the matrix equation

-.. 3

0 . 17 c , 0]

For the characteristic equation,lwe obtain

s*,

12

c 3c + 2 = 0,
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the roots of which are c = 1 and c = 2.

For c = 1, equation (2) becomes

4

Ii 31 x [0-0

10

This matrix equation is equivalent to the system

*Thus, A maps the line x = .---y. onto itself; that is, the subppace of vectors

collinear with
1

is invariant., Actually, since c = 1, each vector of
-7,

.
,

this subspace is invariant.

For 'c = 2, equation (2) becomes,

4

3-1 [11;1 [
0] '4

or

3y = 0, 4.

-ly .
.e

-Hence, A maps ate line y = 0 onto itself; that is, the invariant subspace
,

corresponding to C = 2 is the.set of vectors collinear with W . But in

this subspace, only (()) is an invariant vector.
.

.
1!

Definition 5-9. Each nonzero vector .W satisfying the equation

ATAT.L cW
#

is called a characteristic vector corresponding to the characteristic value c

of A.

The determination of the cliaracteristic roots and vectorp of a matrix is of
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vast importance in many engineering and scientific probleids. The analysis of

flutter and vibration phenomena, the stability analysis of an airplane, and many

other physical problems require finding the characteristic roots and vectors of

matrices.

Exercises 5-6

1. Determine the chara'cteristic roots and vectors of each of the following

matrices:

[2 5
.(a)

0 3 '

(c)
-1 0]]

2 1

'

I73 41
(b)

I 2 '

2
(d)

1]

2. Prove that zero is a characteristic root of a matrix A if and only if

5(A) = 0.

V.

3. Show that a linear transformation f is one-to-one if and:cOly'if zero is

"
not a characteristic foot di the matrix representing f.

4. Prove that if zero'is a characteristic root of the matrix .A, then A has

at most one invariant subspace other than the subspace consisting of the

zero vector alone. What is thse'"maximum number of noncollinear characteris
.

tic vectors that A can have?

5. Determine the invariant subspaces (fixed linps) oP ,the m#pping given by

6 2

2 3]

Show that these lines are mutually perpendicular.

6. The characteristic equation of the matrix

'3]

0 1

4.` f)



in the illUstrative exaMple on page 229 is

c
2

3c + 2 = 0.

For matrices, the corresponding equation is

C
2

3C + 21 = 0,

where I is the J.dentity matrix of order 2 and 0 is the zero matrix of

4
4t,N, #

order 2. Show that A is a solution of this matrix equation; that is',

show that
`3'

7. Show that the matrix A =

A2 3A + 21 = 0 .

a
21,

, a
22

[all 124/]

(matrix) pquation; that is, show that

is a solution of its characteiistic

A
2

(al/ + a22)A + b(A)I = 0.

This result i the case n = 2 of a famous theorem called the Cayley

Hamilton.Tfleormn, which states that an analogous result holds for matrices

.of any order n.

a. Show that
[id

is an invariant vecto,rpf the transformation

1
but that 2 []

IIVII V,

is not invariant under this,mapping. Does this result

contradict Theorem 5-11?

-9. Show that A maps every line through the origin on,to itself if and only if

A =

for r .

9Jf

s'-

or

4.



,1

233

10, Let d... (
all a221

2
:+4 a12a210.where ali, a12, a21,1 and a22 are any

4

real'numbers. Show that the number of distinct real characteristic roots

of 'the matrix

is

[all

a21 a22

.0 if d < 0,

1 if. d = 0,

2 if d > 0.

11. Find a nonzero matrix that leaves no line through the origin fixed.

12. p,teimine a onetoone linear transformation that maps exactly one line

through the origiri onto itself.-

13. Show that every matrix of the form
[

r 5 has two distinct characteristic
s t

X

roots if s 0.

L4. Show that the matrix A and its transpose At have the same characteristic

roots.

5x7. Rotations and Reflections
'', 7 .

Since length is gn important property in Euclidean geometry, we shall.look

for the linear transforma.tions of the plane that leave unchanged the length

IIVII of every vector V. Examples of such transformations are"the.following:

(a) the reflection of the plane in the x axis,

(b) a rotation of the plane through any given angle about the origin,

(c) a reflection,is the x axis followed by a'rotation,about the origin,

Actually, we can show that any lineartransformatI4on that

P....

q.,f441 vectors is equivalent to one of these three. The

2 3 H

preserVes the lengths

following theorem will
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be very useful in proving that result.

, Theorem 5-12. A linear transformation of H that leaves unchanged the

length of everyvector also leaves unchanged (a) the inner product of every pair

of ;rectors and. (b) the magnitude of the angle betweth every pair of vectors.

Proof. Let V and krbe a pair of vectors in Ii and let 1/' and U'

be their respective images under the transformation. In virtue of Exercise

4-5-8, we have

-)

and

HV + U112 -= HIM + 2V U + HUH 2

11VI + 112= 1 1 + 2VNPUI + 11U`112-.

Since the transformation is linear, for the image of V + U we have

+ U)' = + U' .

Conse uently, .(2) can be written- as.

0

It

1

!qv to'll
2
=

2
+:2V'W + !Uri!

2
.

But the transformation preserves the length of each vector; thus, we obtain

= IIVI1, !Uri] HUI!, and 11(V ± U)'11 = I1V VII.

Vaking these substitutions in equation (3), we get

INT'+ U112 = 111/112 + 2V',U' + 1111112.

Comparing equation's (1) and (4),-you see that we must have 4

yipts V10;

that is, the transformation preserves the inner product.
. r),

S

(.2)

(3)

(4)
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Since the

terms of inner

. N

magnitude of the angle between V

pyoducts (Theorem 4-5), it follows

preserves that magnitude.

235

and U can be expressed in

that the transiformation.also

Corollary 5-12-1. If a linear transformitton preserves the length of every

vector, then it maps orthogon:41 vectors onto Orthogonal vectots.

40.

See Exercise 4-5-4 on page 183 for the definition of orthogonal.vectors.

This simply means that the geometric vectors are.putually perpendicular.

It is very easy to show the transformationtare consideringllso pre-

Aerve the distance between,every pair of points in the plane. We state this

property formally in the next theorem, the proof Of whichA.s left as an exercise.

Theorem-5-13. A linear transformation that preserves

vector leaves unchanged the distance between every pair of

that is,. if V' and U' are the-respective images of the

the 1e4th of every

points in tttle p4ne;

vectors . andm.:J!,

then

Let us now find

transformation of H

;* ' '

11V' U'll = 1

?l

V - Ull.

t,N:

f.:ti

a matrix representing any given rinear length-preserving

All we need to find are the images of the vectors

'S =
[]

and S
1 0 . 2 [1

0]

tinder such a transformation. (Why is this so?)

If S and S' are the respecitive images:of S1 and S2, thin we know
1 2

that both S'
1

and St are of length i and that they are orthogonal to each
2

other.

<
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Suppose that Si forms the #ngle' a (alpha) with the positive half (;f

the x axis (Figure 5-8). Since the length of Si equals 1, we have

a
1 sin al*

We know that S is perpendicllar to Si. Hence, there are two opposite

Figure 5-8. A length-preserving transformation.

possibilities for the direction of S, beeause the ankle fl (beta) that

makes with the positive half of the t axis may be either

or

In the-,liVst case (5) we have

r

(6)



1.

cos cos (a+
2

sin p sin (a +1)
2

Anu

. In the second case (6), weHhave

cos (a,---)
2"

sin (a
2

sin a

cos a

- sin a .

cos a

,
237

Accordingly, any linear transformation f that leaves the length of each

vector unchanged must be represented by a matrix having either the form

or .the form

4 Icos a sin Cr]
A =

sin a cos a

[cos a ...sip cl
sin.a "cos a

f

(7)

(8)

In the first instance (7), the.transformation f simply rotates the basis

vectors S
1

and S
2

through an angle a and we suspect that f is a rotation
, ,

of the entire plane H through that angle: To verify this observation, we write

the vector V in terms of its angle of inclination 8 °(theta) to.the X 'axis

*and the length ri=,11VII; that id, we write

s [r

r cos e

Forming, AV from equations (7) and (9), we obtain

2 AV =
r(cos 9 cos a sin 9 sin Cc)

r(sin 9 cos a + cos 9 'sin Cc)

ft
From tlee formulas of trigonometry,

(9)
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we see that

t

cos (E) + a) co 0 cos a s 0 sin..a,

sin (8 + a) sin e Dos a + cos e sin a,

AV =
r cos (0
r sin (e + a)

Thus, AV is the vector of length r at azrangle 0 + cx to the horizontal

axis. We have proved that the matrix A represents a rotatian.of H.through,

the

But suppose f is represented by the matrix B in Equation (8) abOve.

This transformation differs fram the one represented by A in that the vector

) S is reflected across the line of the vector S. Consequently, you may.

. suspect that this transformation aounts to a reflection of the plane in the

x axis followed by.a rotation througl)the angle a. Since y414i know, that tit-P.\

reflection in.the x aXis is represanted by the matrix

,"

you may, therefore, that

[1 0
=

0 -1] '

B = AJ. (10):

We leave this veriflcation as an exercise.

I.
Exercises 5-7

1. Obtain the matrices that rotate A through the following angles:

(a) 180°, .

(b) 45
o

(c) 30°,

(f) 90°,

(g) -120°,

(h) 360°,

213

a
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(d) .60°, (i) 135°,

(e) 270°, (j) 150°.

2. Wite out the matrices that represent the transformation consisting of aA

reflection in the x axis followed by the rotations of Exercise 1.

3. Verify Equation (10), aboVe.

4. A lineak,transformation of H that preserves the length of every'vector is

called an orthogonal transformation, and the matrix representing the trans,-

formationllittked an orthogonal matrix. 'trove that the transpose of an

atthogonal matrix is orthogonal...,

5. Show that the inverse of an orthogonal matrix is an orthogonal matrix.

(
6. Show that the product of two orthogonal matrices is orthogonal.

7. (a) Show that a translatio0 of H in the directiork of the vector

and through a dktance equal tp the length of U is given by the mapping

(b),Silow that this mapping does not preserve the leng;h of every vector,

but that it does preserr the distance between every pair of pointd im the

plane.

:(c) Determine whether or #ot this mapping is linear.
,

411P*

8. Let Ra and denote rotations of H through the angles a and D,Rp

respectively. Prove that a rotation through a followed by a'rotation

through p amounts to a rotation through a ; that is, show tha,p

Roita = Roap . .

9. Note that thejmatrix A of Equatiori (7) is a representation of a complex

V.

4,
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number. What does the result of Exercise. 8 imply for complex numbers?

10. (a)- Find a matrix that represents a ref/ection across the line of the

vector

[cos a]
sin a

(b) Show that the matrix B -of Equation (8), above, represents a reflection

across the line of some vector.

.4

L

t
i?
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Appendix

-RESEARCH EXERCISES

The exercises in this Appendix are essentially "researchtype" problems

designed to exhibit'aspecti of theory and practice in matrix' algebra ihat could

not be included in the text. ,They are
A

especially suited as individual assigm
. ,

menta for those students who are prospec e majors in the theoretical and

pratical aspects-of the scientific disciplines, and for students who.would like

to test their mathematical powers; or students might toin farces in working them.

1. Quaternionp. The algebraic system that is explored in this exercise

was inVented by the Irish mahematician and physicist,,William Rowan Hamilton,

wholublished his first paper on che subject in-1835. ft was not until 1858

that Arthur Cayley, an English mathematician and lawyer, published the first

paper on matrices. Since Hamilton's system of quaternions is actually an

algebra of matrices, it is more eaily presented in this guise than in the form

which it was first developed.
rt

In this exercise, we shall consider the algebra of, 2 X 2 matrices wsith

complex numbers as entries. The definitions of addition, multiplicatiOn, and
,

inversion remain the same. We use C for the set of all complex numbers and
IP

we denote by K the set oi all matrices
\ .,.

z w \

,
zi wi.

.

I. 0

where z, w, zl, and Wik _arevglements of C.! As is the case with matrices

luiving real entries, the element

241

2
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104

Z

Z
1

.
of K has an inverse if and only if

and we.have

W

zw wz 0 0,

.

"zw ^
a'

Z W
zw

1
z w .z

Since 1 is a complex numbier, the unit matrijc is still

0

-then we write

r
o

61
ij

*

and call tliis nutber he complex conjugateof z, or simply the conjugate of z.
4P'

A quaternion is a element q of K. c.f.-the particular form

Z W

"E1
z e C and' w e C.

We denote by Q the set of all quatexnions.
2 2(a) Show that 5(q) =ox .+ y2 + u2 + v if z x + iy and w u.+ iv.

Hence conclude that, since x, y, u, and v are real numbers, 5(q) = 0 if

and only if 1 = 0.

(b) Show that if q e q then q has an inverse if and pnly if q #

9 4,
k

a



and exhibit the form of fq-L if it exists.
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4

Three elements of Q are of particular importance and we give them special

names:

(c) Show that If

U =
ol[i

0 -1

V = L-1 0
0 1

[i 0
0 i

=

here z = .+ iy and w = u + iv, then

tnd

..

q = xI + yU +` uV + vW.

(d) Prove the following identities invotving 1, U, V and W:

.112 2 w2

a .

- UV = VU, VW = U - WV, and WU = V = UW.

(e) Use the preceding two exirci'ses to show that if q c Q and r e Q,

then q + r, .q r, and qr are all elements of

'The conjUgate of the element

=

is

Q.

= X iy, w = + iv,
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1

g

- and the norm and trace are given -respectively by

and

[8(co] 1/2

t(q) = 2x.

(f) Show that. if q e Q, and if q4 'is invertible, then
a

9.

From .p is conclude'thit if q 6 Q, and if q exists, then q e Q.

1
-(g) Show that each q E Q satisfies the quadratic equation

\

q
2
--t(q) q + 1q1

2
tI

4
(h) Show that if q e Q then

.Nqte that this may be.proved by wing the result that if

S.

then

q = aI + bIJ -1- cV + dW

= bU cV dW;

and then using the xtsults given in (d).-

411'

(i) Show that if q c Q and r c Q, then

4 Iqr.1 = Iqi tn
,

and

rl < 10+ IrI.



The geometry of quaternions codstitutes,a very interesting subject. It

requires the representation of a quaternion

q = aI + eV -I-dW

as a point with coordinates (a, b, c, d) in fourdimensional space. The

subset'Of elements,

lbw

Q1 -.tq I q

245

is a group and is represented geometrically as the hypersphere with equatioth

2 2 2 2al-b+c+d=

2. Nonassociative Algebras

The algebra of matrices (we restrict our attention in ehis exercise to the -

,

set M of 2 X 2 matrices) has an associative but hot a commutativd multipli

cation. "Algebras" with nonassociative multiplication have become increasihgly

4
important in recent year'sfor example, in mathematical genetics. Genetics is

a subdisciplihd of biblogy and is concerneewith transmission of,hereditary

traits. Nonassociative "algebras" are important also in the s.tudy of quantum

mechanics, a subdiscipline,of physics. We give first a simple example.of a Lie

algebra (named after the geometer Sophus Lie).

If A4t"M and B e M, we write *

AoB = AB BA

and read this "A op B," "op" being an abbreviation for operation. -

(a) Prove thlt following properties of 0 :

14

(i) AoB = BoA,

Aoewe (ii) ,A0A = 0,

4
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(iii) lo(BoC) + Bo(CoA) +Co(AoB) = 0,

(iv) AoI = 0 = IoA.

(b) Give an example to shokg that Ao(BoC) and (AoB)oC are different

and'hence that o is not an associative operation.

Despite these strange properties, o behaves nicely relative to ordinary

matrix addition.

and

i(c) Show that o distributes over addition:

Ao (B + C) .(AoB) + (AoC)

(A.+ B)oC = (AoC) + (BoC)

(d) Show that o behaves nicely ielative to multiplication by a number.

It will be recalled that A-
1

is called the multiplitative inverse of A

and is defined as the element B satisfying the relationships

But it must also be recalled,that this definition Was motivated by the fact that

AI = A =

that is, by the fact that 1' is a multiplicative unit.

(e) Show that there is no o unit.

We know, from the forego ng work, that o is neither commutative nor

associative. Here is another kind of oper ion, called Jordan multiplication:Ot

If A e M and B e M, we define

AJB=

WO see.at once that

41.
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c2

AJB a BjA,

. so that Jordan multiplication is a commutative operation; but it is not

associative.

(f) Determine all of the properties df,the operation j that you can.

For exami;le, does j distribute over addition./

3. The Algebra'of Subsets

We have seen that there are interesting algebraically, defined subsets of
-v

M, the set of ill 2 X 2 matrices. One suth subset,for example, is the. set

Z, which is isomorphic with the sett of complex nUmbers. Itachof higher

mathematics is concerned with the "global structure" of "algebrasi" and' generally

this involves the consideration of subsets of the "algebras" being studies. In

*Obis exerci we shall generally underscace letters to denote subsets of M.

If A and B are subsets.of M, then

A + B
I.

is ae set of all elements of the form
VI

44

A B, where A eM and B e M.

In setbuilder notation this may be written

A+B=(A±B 1 Ae and, B e '13). . J4.

By an additive subset of M is meant a subset A C M such that

A+AC A.

(a) Determine which of the following are Additive subsets of M:
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4

(v) N1, the set of all* A in M with 5(A) = 1,

(vi) The set of all elements of H whose entries 'are nonnegative.

(11;) Prove that if A, B, and C are subsets of 14, then

(i)

(ii) A-+ (B + C) = (A + B) + C,

'and if A C. B then A + + C.

(c) Prove that if A and B are additl.ve subsets of M, then

is also an additive subset of M.

Let denote.the

\
(

a

with x C R and ,y e R.

(d) ,Show that if

A + B It

set of all carmm. vectors

y. is a fixed element of V, then

AIAEM and Av=

'an additive subset of M. Notice also that if Av = 0 then .1.1%.)v = 0.is/0-

If A, and B 'are subsets of M, then

is the set.of all

AB .st

AB .A M and B



,

Using the set=builder notation, we can write this in the form

l

A subset A.

AB=(AIAA and

M is multiplicative if

(e) Which of the subsets in part (a) are multiplicative?

Show that if A, B, and C are subsets of M, then

(i) 'A(BC) =(AB)C,

E'ind if A C B, then AC C BC

(g) Give an ermple to two subsets A and B of M such that
2

4 AB iBA.

(h) Determine which of the following subsets are multiplicative:

249

(i) (0, I),

(ii)

(iii) the set 2f all'elements of M with negative entries,

k(iv) the set 'of all elements of M for which thp upper left-hand

entry'is less than 1,

(v) the set of all elements of M of the form

with 0 < x, < y, and x y < 1.

4

The exercises stated above are sugge.;tions as to how this "algebra Of

subsets" works. There are many other results that come to mind, but we shall

leave them to you to find. Here are some clues: 'How would you define tA if

t e R and A e. M? Is (-1)A =-- A? Wait a minute: What does -A mean?
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,P

.4..

What does A
7
mean3 Does set multiplication distribute over addition, over

union, over interkection? Do not expect that even your teaCher knows the

answer to'all of these possible questions. .Few, people know all of them and

fewer still, of those who know them, remember ehem.o If you conjecture that

something is true but the proof of it escapes .you, then try to construct an

example to show that it is false. If thitd;:s not work, try proving it again,

and so on. 4

4. Analysis and Synthesia of Proofs

This'is an exercise in analysis and synthesis, taking an old proof to

piebes-and using the 'phttern to makd a new proof. In describing his activitids,

.a mathematician is likely to put at the very top that of creating new results.

,-

But "result" in mathematics tisu'ally means t'theorem and proof." The mathematician.

does not by any means limit his methodsin conjecturing a new theorem: He

/
guesses, uses analogies,/draws diagrains and figures, sets up physical models,

, / ..,
)

experiments,,-,computes;i/no holds are barred. Once he has, his conjecture firmly

r

in mind, he is only half through, for he still must construct a proof. One way
/

of doing this is to/analyze proofs of known theor4ms that are somewhat like the

theorem he is trytng to prove and then sirnthesize a proof of the new theorem.

Here we ask you to apply this process of analysis and synthesis of proofs to

)the algebra of matrices. To accomplish phis, we shall introduce some new

operations among matrices'by analogy with the old ,Operations.
,

For simplicity of

To start with, we

. If x R and y c.R,

.and

computation, we shall use only

introduce new operations in the

we define

2 X 2 matrices.

set of real numbers, 4!

= the smaller of x and y (read: "x

)

-

cap ,y")



x V y = the larger of x and y (read: "x cup Y").4
(a) Show that if x e R, y 6 R, and' z 6,R, then

#

(i) x AY = Y A x,
*

(ii)
x A (Y A z) =.(x.A y) A z,

0

(iv) X ,V (Y V z) = (x V y) y; z,_

4
(vi)'xVxE. x,

(vii) x A (y V z) = (x A y) V.(x A Z)

(viii) X V cY A z) = (x V Y) A (x V z).

(
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Although the foregoing operations may seei a little unusual, you will have. '

no difficulty,in proving the-above statements. They are ntat,diffiUlt to

remembe'r if you notice the following ,facts:

,

A

The evennumbered results can be obtained from the oddnumbered results by

.h-4terchanging A and
t

V , and conversely.

The first states. that A is commutative and the thirdstates that A is

associative. The fifth is new but the sevehth states that A distributes over

V.

To define the matrix operations, let us think of A as the analog of .

multipl4ation and V as the analog of adaition and let us begin with our new

matrix "multiplication.A

We define
'

a b

[
c z w

Pr

(a A x) v (b V z) (a ,/,\ y) V (b A w).-

Jc A x) V (d A z) (c y) V (a A w)

This is simply the row by column operations, excppt that A is used in

place of mdltiAitation and V is used in place of addition. __Te_ see this more
Or-

jf..)

pi



252

clearly, we write

b- [x y ax + bz ay + bw

d z wi Lcx + dz cy + dw_

(b) Write out a prpof that if A, B, and C are elements of I H, then

A(BC) = (AB)C.

Be sure not to, omit any steps in the proof. Using this as a pattern, write out

a'proof that
*"7

A A (B AC) = (A AB) KC,

,"-""4 ,
verifying at each step that you have the necessary results from (a) to make the

_proof sound. List all the properties of the two pairs of operations that you

need, such as associativity, commutativity and distributivity.

..(c) Using the analogy, between V and addition, define A MB for elements,P

A and. B of M.

.(d) State and prove, for the new operations, ana16gues of-all the rules

you know for.the_operatiofis of matrix addition and multiplication.

,

NT
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Aaron, 2
Abelian group, 99
Abelian property,of binary,operation, 99
Abstract group, 98-99-
Addition of matrices, 11-12, 19-20

associativity law for, 14-15
commutativity Law for, 13

"Addition" symbol:E. , 35
Addition of vectors, 10

geometric interpretation of, 171-173
Additive inverse, 15

..A1gebra112-113
embedding of, 110
global structure of, 247
nonassociative, 245
richness of, lip
of subsets, 247

Angle betweenitwo vectors, 178
Anticommutative matrices, 55
Are& and determinant function, 185-188
Associative law fr addition, 14-15,

56, 58, 62
of matrices, 14-15 4

Associative law for multiplication, 47,
56, 58, 62

of matrices, 47
Associative property of binary

operation, 99
Atom, 120
Backward 4O1ution, j122
Basis, 146

coordinates of a vector relative to,
196

natural, 197-
Binary operation, 98-99

abelian property of, 99
associatiVe property of, 99
closure property of, 99
commutative property of, 99
identity property of, 99
inverse property of, 99

Brackets used in designating matrices, 4
Cancellation lam for multiplication, 42

invalidity of, for matrices, 41-42
Cap operation,'250
Cartesian coordinate plane, 165
Cayley, v

CayleyHamilton theorem,-232
Characteristic equation, 229
Characteristic root, 229
Characteristic value, 229

Characteristic vector, 230

255

Clock face, group property of,
addition associated with, 94-100

Closure property of binary operation,
'99 *

Collinear vectors, 166
Column matrix, 5 4.1

Column af a matrix, 3
Column vector, 5
orderof, 154-160

Combination, linear, 194
Commutati e group, 99
Commutitiv law for addition, 13,

56, 58, 62
Commutative aw for multiplication,

41,.56, 8, 62
invalidity f, for matrices, 40-41

Commutative pr perty'of binary
operation, 9

Comi3lex numbers;\ 1, 0'-11, 103-111, 241
isomorphism of\,, wi h matrices,.

103-111
Composition transfo tion, 219
Computing machines, v 117
Conformabilityfor a44ition, 11
Conformability for multiplication, 31
Conjugate, of a complex number, 242
of a quaternion, 243

Contraction factor, 201
Coordinate plane, Cartesian, 165
Coordinates of a vectoro 196
Correspondence, onetoone, 106
Cosines, direction, 164

law of, 177
Cup operation, 251
Diterminant function, 85-86

of multiplicative inverse, 88
of a product,. 87

related to an area, 185-18e
,.c.f the transpose of a matrix, 92
DIagonal method, 117, 139-141
Diagonal, principal, 140
Difference of matrices, 16, 19-21
Direction cosines, 164
Distribution laws for multiplication

over' addition, 47-48, 56, 58, 62

Domain, 127-128, 199
Electronic computing machine, v, llf
"Element"'symbol 6, 12
Elem.entary matrix, 132

inverse of, 132-133
Elimination, method of, 116

Entry of a matrix, 3
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Equality of matrices, Admi, _N

Equation, charadterilOW-229
Expansion factor,,201
1?actor, contraction, 201
expansion, 201

Field, 58, 63
Finite group, 101
Pixel' point, 227

Fixed vector, 227
Forward solution, 119-122
Function,-127, 199
determinant, .85-86

matrix, 127
'Galois, 101 ,

Geometric'transformation, 191, 199
Geometric vecpr, 163
Global structure oi algebra, 247
Group, 93

abelian, 99
abqtract, 98-99
coAmutative, 99.
finite, 101
of-integers, 100-101
of invertible matrices, 93
related to face of clock, 99-100

Hamilton,232, 241
Heisenberg, v
Identity element for addition, 12'
Identity element for multiplication,

39, 52'

Identity map, 205
Identity property of binary operation,'

99
Identity transformation, 205,
image,-200
Importance of matrices, v, 2
Inequalities for vectors, 181, 185
Infinite decimal, 1
Inner product, 177-179
algebraic properties of, 181-182'

Invariant subspace, 2274'
Inverse matrix function, 143
Inverse, multiplicative, 57, 71 /

of elementary matrix, 132-133
,of matrix of order two, 83
of a product, 89
uniqueness of, 75

Inverse property of binary operation,
99

Isomorphism, 109-110
'Jordan multiplication, 246
Kernel, 205
Law of ossimes,'177
Left multiplication, 41

. Length of a vector, 164
Lengthpreserving transformation, 233

Linear coMbination, 194
Linear equatidhs (see Systems of

linear equations) -0 .

Linear map, 209 -

, Linear transformation, 209'
Lopez, 2
Mantle, 2-3
Map, 19.9

identity, 215
v.ainear, 209

, 'Matrices, 3
addition of (see Addition of matrices)-
anticommutative,. 55'
conformable for addition, 11
difference/of, 16, 19-21

. equality ot,-8 4

identity element for,addition of, 12
importance of,-v, 2
mu1tip]4cation of (see Multiplication

of Imatrices)

notation fox,6
product of, 34
subtraction of, 16, 197-21
sum of-, 11-12, 19-20
additive'inverse of,-16
brackets used in designating, 4
column, 5
elementary, 132
inverv ofi 132-133
"entry of:3.
column of, 3
multiplication of, by'a number, 22

25
multiplicative inverse of, 57,'71
for matrices of order two, 83
uniquehess.of, .75
riegative of, 16

order of,01.

orthogonal, 239
row, 5
row of, 3
square; 4
square, order of, 5
transpose of, 6

Matrix function 127

inerae, 143
Matrix transformation, 208 ,

14olecule, 120,
Multiplication, Jordan, 246
Mu4iplication of matrices,27-36

associative law for, 47

, conformability for, 31
distribution laws for, over addition,

47-48
identity element for, 39, 52
invalidity pf cancellation law for;

41-42

4
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Multiplication of matrices
left, 41

right, 41
.by zero matflix, 51 s-

p.JHultiplication of matrix'by number,
22-25

Multiplicative inverse of elementary
-matrix, 132-133

'Multiplicative inverse of a matrix,
57, 71

of order two, 83
uniqueness of, 75

Multiplicative inverse of a product, 89
Natural basis, 197
.Negative of a matrix, 16
Negative of a number,,15

, Negative whole number, 1
Npnassociative algebra, 245

operation in, 245
Norm are of a quaternion, 244

of a vector, 164
Notation for matrices, 6.
Null vector,.164
Number, 1
-complex, 1
negative whole, 1
positive whole,
teal, 1 .

zero, 1
One-to-one corespondence, 106
One-to-one transformation, 205
Operation in a nonassociative algebra,

245

Order of a matrix, 4
Orthogonal vectors, 183 \
Parallselogram law, 173, 188
Perpendicular vectors, .17?
Point, fixed, 227

ontinued),

PolynomiAs, residue classes of, 110
Positive whole-number, 1
Brincipal diagonal, 140
Product of matrices, 34
Product matrix,,,..3a7-31

Product of matrix and numberi:23
t,

Product of vector and number, geometric
interpretation of, V7-168

'Programming, 117
; Projection, 205

orthogonal, 205
perpendicular, 205

PythagOrean.theorem, 163
Quaternion, 241-245
norm of, 244

4 trace of, 244
Range, 127-128, 199

257

Real-number, 1
Reciprocal of a ma.trix (see Inverse,

'multiplicative)

Reflection in a line, 219;233
Reflection in the origin, 200
Root, characteristic, 229
Right multiplication, 41
Ring, 58, 65768

with an identity element, 58
Rotation, 218,,233
Row,matrix, 5
Row of a matrix, 3
Row vector, 5
Scalar, 215
Set M of 2.X 2 matrices, 56

clos#re of, with,respect to addition,
\ 56

closure of, with respect to multi-
*plication, 56

Shearing, 204
Sigma notation, 354.k
Slope, 164
Solution, backward, 122
.Solution, forward, 119.-122
Space, vector, 191
Square matrix, 4

order of, 5 ,

Square roots, 43-44
Structure of algebras, 247
Structure of mathematiCs., iii, v
Subset, additive, 24g. -

Subsets, algebra of, 247
Subspace, 192

tnvariant,,227
Subtrattion of matrices, 16, 19-21
Substitution, method of., 115
Subtraction of vectors, geometric

interpretation of, 175
Sum of matrices, 11-12, 19-20
Systemssof linear equations, 115

elimination-method for, 116
equivalent, 116
in general, 1td."..-156

"line" of solutions of, 153
substitution method for, 115

Trace of.a quaternion, 244
Transiormation, 191

composition, 219
geometric, 191, 199
identity, 205 .

inverse, 225
44

length-preserving,. 233
linear, 202. ..

matrix, 208
one-to-one, 205
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. "Transformation (continued),
ollp, 200_
orthogonal, 239
of the plane into itself, 199

:Transformations, canposition of, 219
product of, 219

Transpose of a matrix, 6
Triangulation method, 117, 119-125

solution by matrices, 130-138
insterms of matrices, 125-129

Unit circle, 97
Unii matrix, 52
Value, characteristi, 229
Vector, 5

characteristic, 230
column, 5
fixed, 227.

geometric, 163
length of, 160.
oultipkication by a riumber, geo-

metrical interpretation of,
167-168

mord of, 164
null, 164
representation of, by .directed

line segment, .162-163
row, 5
zero, .164

9

Vector analysis 188-189
Vector function, 199
Vector space, 112, 191
Veceors, 5
.addition of, 10

geometric interpretation of, 171-173
parallelogram law for, 173, 188

angle between, 178
bound, 189
collinear, 16&
collinear, in opposite directions,

180
collinear, in same direction, 180
free, 189
inequalities for, 183, 185
inner product of, 177-179

'algebraic properties of, 181-182
orthogonal, 183'

perpendicular, 177
subtraction of, 16, 19.-21

geometric interpretaticr of, 175
Whole number, 1
Williams, 2
Zero, 1
Zero matrix, 12, le
as identity matrix for addition, 12
multiplication by, 51

Zero vector, 16A
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